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ABSTRACT  

GPS signals are very susceptible to interference due to 

weak satellite signal power. Multiple antenna receivers 

have been considered to be effective tools for interference 

suppression in GPS. In open loop nulling and localization 

schemes, we proceed with accurate interference direction-

of-arrival (DOA) estimates which enable a follow-on 

effective interference suppression using available spatial 

degrees of freedom. In this paper, we consider sparse array 

configurations where the respective coarrays permit DOA 

estimation of a large number of interferers.  The estimates 

are provided by using sparse reconstruction techniques. 
Guided by both minimum redundancy array and boundary 

array configurations, we design optimal placements of 

multiple GPS arrays on a regular Cartesian grid to achieve 

desirable performance. 
 

2. INTRODUCTION 

Global Navigation Satellite Systems (GNSS) receivers are 
vulnerable to the presence of jammers and interferences. In 

order to counter this problem, antenna arrays have been 

proposed to steer nulls towards the interfering signals [1], 

[2], [3]. Adaptive interference nulling algorithms can be 

broadly classified into two types: open-loop and closed-

loop techniques. In [4], the performance of an open-loop 

null-steering algorithm was analyzed. This algorithm 

involves a two-step procedure. First, the DOAs of all 

impinging plane waves are estimated using a direction-

finding algorithm. Second, a set of complex weights for 

the linear combiner is computed which places proper nulls 

in the estimated interference directions. In this regards, 
accurate interference DOA estimates would imply better 

jammer suppression. The work on concurrent adaptive 

nulling and localization in [5] proposed a reverse approach 

where DOA estimates follow interference nulling.  

 

The commonly used DOA estimation techniques are those 

evolving around Capon’s methods and MUSIC algorithms.  

However, the number of estimated signals cannot exceed 

the number of physical antennas. This may present a 

challenge for GPS receivers, stemming from their limited 

number of antennas and small array aperture. Typical GPS 
multi-antenna receivers are Controlled Radiation Pattern 

Antenna (CRPA) arrays, which have a circular aperture 

with one element in the center and three to seven elements 

on the circumference. A larger array with more antenna 

elements can be established by using coherent multiple 

CRPA arrays. The result is a sparse array with a 

covariance matrix of a larger dimension compared to the 

case when each CRPA array is considered separately.  

 

Conventional DOA estimation techniques can be applied 

to any array configuration, provided that the number of 

sources is less than the number of physical sensors. If this 
condition is not satisfied, high-resolution DOA estimation 

can be accomplished based on two approaches, neither 

requires increasing the number of physical antennas: 1) 

different spatial lags of the covariance matrix of the sparse 

array are used to form an augmented Toeplitz matrix, 

which is equivalent to the true covariance matrix of an 

equivalent filled uniform array. These DOA estimation 

techniques are related to the covariance augmentation 

technique [6]-[12]; 2) the covariance matrix of the sparse 

array is vectorized to emulate observations at the 

corresponding difference coarray, which is defined as the 
set of points at which the spatial covariance function can 

be sampled with the physical array. The former technique 

requires positive definite Toeplitz completion for partially 

augmentable arrays [8], [11], which is difficult to 

implement for sparse circular arrays. In the second 

approach, the sources are replaced by their powers, casting 



them as mutually coherent. Spatial smoothing must then be 

applied to decorrelate signals and restore the full rank of 

the resulting covariance matrix [13], [14]. Spatial 

smoothing, however, requires availability of a set of 

contiguous coarray points (without any missing points or 

holes), which limits its applicability to the multiple CRPA 

arrays based configuration.  

 

In order to better utilize the coarray aperture and increase 
the available degrees of freedom without the requirement 

of contiguous spatial lags, a sparse reconstruction method 

for DOA estimation is adopted based on the second 

approach of covariance matrix vectorization [15]. Non-

uniform arrays for DOA estimation of GPS satellite 

signals were proposed in [16], [17], where the adopted 

fourth order statistical processing method is somehow 

similar to the coarray approach utilized in this paper. 

However, in those reference papers, traditional 

beamforming DOA estimation techniques were chosen, 

which put a strict limit on the achievable resolution due to 

the Rayleigh criterion. Moreover, the application of virtual 
arrays is restricted to the GPS signals, without taking 

interference nulling into account.  

 

Configuring an overall array which consists of multiple 

CRPA arrays requires studying the associated difference 

coarray. An effective configuration reduces the number of 

redundant virtual elements in the difference coarray. 

Minimum Redundancy Arrays (MRAs) constitute the most 

common class of sparse arrays. The MRAs aim at 

minimizing the number of spatial redundancies without 

introducing any holes in the difference coarray for a given 
number of sensors. Linear MRAs have been extensively 

studied [18]. The concept of MRAs has also been extended 

to planar arrays [19]. Since the solution of 2D MRA 

design problem is much more involved than linear array 

configurations, boundary arrays are also investigated as 

alternative possibilities for sparse 2D apertures [19], [20]. 

Unlike conventional 2D MRAs, the proposed design has 

additional constraints imposed by the circular nature of 

each CPRA array aperture. With this restriction, we 

consider each CRPA array as a unit element and design 

optimum placements of multiple CPRA arrays on a regular 
Cartesian grid to achieve desirable sparse configurations, 

including minimum redundancy and boundary array 

configurations.  

 

In this paper, we implement the above proposed approach 

using both simulated and real GPS data. The latter is 

acquired using a 32-antenna array, which consists of four 

8-antenna circular arrays arranged in a two-by-two square 

shape. In order to test the proposed strategy, we use 

Matlab to inject closely spaced strong interfering signals 
into the collected interference-free data. For the simulated 

data, both Minimum redundancy and boundary array based 

optimum configurations of these four CRPA arrays are 
determined. The experimental and simulation results lead 

to a number of conclusions. First, the 2D array geometry 

plays an important role in determining the DOA resolution 

capability.    Second,  the  coarray  based   optimum   array  
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Figure 1 Four-antenna MRA and the corresponding 
difference coarray. 

 
Figure 2  Four element boundary array (pink circles) and the 

difference coarray (blue circles). 

structure provides superior performance compared to other 

configurations.  

 

3. DIFFERENCE COARRAY BASED SPARSE 

ARRAY CONFIGURATIONS 

 
In many signal processing applications, the difference set 

occurs naturally in the computation of the second order 

statistics, such as the spatial covariance matrix of the 

received signal by an M-antenna array [21]. Assuming that 

the positions of the array elements form the set 

= { (x , y ) : i =1,...,M}
i i

S 
i

p , (1) 

the corresponding difference coarray has positions, 

 { , , 1,..., }.dS i j M 
i j

p - p  (2) 

That is, the difference coarray is the set of pairwise 

differences of the array element positions and the received 

signal correlation can be calculated at all ‘lags’ comprising 

the difference coarray. Hence, by suitable construction of 

the original set S, the number of spatial lags can be 

substantially increased for a given number M of physical 

antennas. For example, minimum redundancy arrays are 

those configurations of M antenna elements that satisfy 

minimum (R|H = 0; M = constant), where R and H denote 
the number of redundancies and holes in the coarray, 

respectively. For illustration, consider the four-antenna 

minimum redundancy linear array, shown in the top plot of 

Figure 1, with element positions
0{0,1, 4,6}dS  , where

0d is 

the fundamental unit inter-element spacing (usually one-

half wavelength). The corresponding difference coarray, 

depicted in the bottom plot of Figure. 1, is a filled linear 

array with element positions
0{-6, 5,..., 0,...,5,6}ddS   . A 2D 

example is provided in Figure 2, which shows a four-

antenna square boundary array and the corresponding 9-

element filled 2D square coarray, which has an aperture 
twice that of the physical array.  



4. SIGNAL MODEL 

 
We consider the problem of estimating the angles of 

arrival of K uncorrelated narrow-band sources, which are 
spatially distributed in the elevation and azimuth directions 

at
1 1 2 2( , ), ( , ),..., ( , )K K      , respectively. Then, the ith 

element output at time t can be written as 

 
0 k i k i k

K
jk cos (x cos +y sin )

i k i

k=1

z (t) = s (t)e + n (t), i = 1,2,...,M,
  

  
(3) 

where 
0k = 2 /   represents the wavenumber, 

ks (t)  is the 

kth source signal,  and 
in (t) is the spatially white noise of 

variance 2

0 . In vector form, (3) becomes 

 (t) (t) (t),z = As + n  (4) 

where 

 T

1 2 M(t) = [z (t), z (t),..., z (t)] ,z  (5) 

 T

1 2(t) = [ (t), (t),..., (t)] ,Ks s s s  (6) 

and 
 T

1 2 M(t) = [n (t), n (t),..., n (t)] ,n  (7) 

Here, the superscript ‘T’ denotes matrix transpose. Also, 

 [ (1), (2),..., (K)],A a a a  (8) 

where (k)a is the steering vector associated with the kth 

source, i.e. , 

 0 k 1 k 1 k 0 k M k M kjk cos (x cos +y sin ) jk cos (x cos +y sin ) T
(k) = [e ,...,e ] ,

     
a  (9) 

The correlation matrix 
zzR  of the received signal is given 

by, 

 H H 2

zz ss 0 M= E{ (t) (t)} = + ,R z z AR A I  (10) 

where 
ssR  represents the source correlation matrix, which 

is diagonal with the source powers 2 2 2
1 2, ,..., K    populating 

its main diagonal, 
MI is the identity matrix of size M, and 

the superscript ‘H’ denotes conjugate transpose. With the 

assumption of uncorrelated sources and 

defining x y

k k k k k ku = cos cos ,u = cos sin    , the ijth 

element of 
zzR  can be expressed as, 

 
0jk [(x ) +(y ) ]2 2

ij 0

1

( ) r e ( ),
yx

i j k i j k

K
x u y u

zz ij k

k

i j  
 



   R  (11) 

Vectorizing 
zzR , we obtain 

 2

zz 0= vec( ) = ,z R Ab + i  (12) 

where [ (1), (2),..., (K)]A a a a , (k) (k) (k) 
*

a a a ,‘  ’ 

denotes the Kronecker product, ‘*’ is the conjugate 

operation, vec( )Mi I , and 2 2

1[ ,..., ]
T

K b . The vector 

z can be treated as the data received by a much larger 

virtual array, whose element positions are given by the 

difference coarray and the corresponding steering matrix is 

defined by A . Utilizing the coarray measurement vector 

z for DOA estimation permits handling of a greater 

number of signal arrivals than the number of physical 

antennas. The equivalent source signal b in (11) consists 

of the powers of the actual sources and the noise becomes 

a deterministic vector. Therefore, the rank of the 

covariance matrix 
zzR is one, and the subspace-based DOA 

estimation techniques, such as MUSIC, would fail. 

 

It should be noted that if the resulting difference coarray is 

uniformly spaced with no missing lags, as in Figures 1 and 

2, spatial smoothing can be utilized to restore the rank 

of
zzR , followed by the MUSIC algorithm for DOA 

estimation. However, in this paper, we consider sparse 

array configurations, where the unit element in the sparse 
array is not a single antenna but rather a CRPA array. As 

such, the corresponding coarray has holes, rendering the 

smoothing approach non-applicable. Instead, we adopt a 

sparse reconstruction method based on the coarray as 

detailed in Section 5. Further, because sparse array designs 

reduce the number of repetitive spatial lags in the 

corresponding difference coarray, the coarray based DOA 

estimation technique is more sensitive to high noise levels. 

However, this problem is not of much concern in GNSS 

applications, since the interferences and jammers are 

usually of high power.  
 

5. SPARSE RECONTRUCTION BASED DOA 

ESTIMATION 

 

In order to utilize the degrees of freedom offered by the 

coarray, a sparse reconstruction based DOA estimation 

method is employed. The estimate of b  is obtained as the 

solution to the following l1–norm regularization problem, 

  2

1 0 2
ˆ || || || || ,arg min    

b

b b z - Ab i  (13) 

For notational compactness, we define [ , ]B A i  

and 2 2 2 2

0 1 0[ , ] [ ,..., , ]
T T T

K    c b . Then (13) can be 

reformulated as  

  1 2
ˆ || || || || ,arg min  

c

c c z - Bc  (14) 

By defining matrix g
B as the collection of steering vectors 

over a finite searching grid
1 1 2 2( , ), ( , ),..., ( , )L L      , 

where L > K, the optimization problem can be expressed 

as 

  1 2
ˆ || || || || ,argmin

g

g g g g 
c

c c z - B c  (15) 

where the l2-norm in the objective function denotes the 

least square cost function ensuring data fidelity, and the l1-

norm promotes the sparsity of the unknown vector g
c . In 

addition,   is the trade-off parameter between the least 

squared error and the solution sparsity. Since both z and 
g

B are complex, a simple transformation from complex to 
real domain is required.  

 

Define ˆ [real( ), imag( )]
T T T

z z z and ˆ [real( ) , imag( ) ]
g g T g T T
B B B , 

then (15) is equivalently described as, 
  1 2

ˆˆ ˆ|| || || || ,arg min
g

g g g g 
c

c c z - B c  (16) 

In order to fully characterize the sparsity property of the 

spatial spectrum vector g
c , an iterative reweighted l1-norm 

method is adopted [23]. The reweighted l1-norm method in 

the kth iteration is formulated as follows, 

 



 
Figure 3 A single CRPA array (pink filled dots) and its 

corresponding difference coarray (black dots). 

 

  2
ˆˆ ˆ|| || ,arg min

g

g T g g g

k 
c

c w c z - B c  (17) 

Here, we utilize the non-negative property of spatial 

spectrum coefficients, i.e., 0
g
c . The weights 

( ), 1,...,k l l Lw are updated as, 

 

1

1
( ) , 1,...,

( )
k g

k

l l L
l 

 


w
c

 (18) 

where  is a constant with a small value that provides 

stability against the zero entries of g
c . The above problem 

is convex, and can be effectively solved by the CVX 

software [24]. 

 

6. COARRAY BASED GEOMETRIES FOR 

MULTIPLE CRPA ARRAYS 

  
The difference coarray of multiple CRPA arrays consists 

of not only the self-differences between the elements of 

the same CRPA array, but also the cross-differences 

between the elements of different CRPA arrays. The 

coarray based design problem, therefore, reverts to the 

optimum placement of CRPA arrays on a regular Cartesian 

grid such that the cross-differences have minimum or 

reduced redundancy and are distinct from the self-

differences.  

6.1 A SINGLE CRPA ARRAY 

 

We first consider a single CRPA array consisting of eight 

antennas, with one antenna at the center and remaining 

seven uniformly distributed along the circumference of a 
circle with radius 0.19 meters, as indicated by the pink 

dots in Figure 3. Its coarray is a four-circular concentric 

array with each circle having 14 uniformly distributed 

virtual antennas, as indicated by black circles in Figure 3. 

The total number of distinct spatial lags is M(M-1)+1=57, 

including both positive and corresponding negative lags.  

 

The maximum number of estimated sources by the 

physical circular array is a function of the array radius and 

the arrival angles, and is, in general, less than the number 

of the antenna elements (8 in this case) [25]. On  the  other  

 
Figure 4 Pseudo-spatial spectrum of the coarray 

hand, the maximum number of estimated sources based on 

the coarray approach is equal to the number of unique 

positive lags in the difference coarray (28 in this case) 

[27], which is much higher than the number estimated by a 

single physical CRPA array. Assume there are 14 

uncorrelated sources with equal powers, impinging on the 

eight-antenna CRPA array of Figure 3. The sources are 

uniformly distributed within the azimuth range [0 ,360 ]  at 

0 elevation angle. The signal-to-noise ratio (SNR) is set 
to be 10dB. Traditional MUSIC algorithm cannot resolve 

these sources based on the measurements from the 

physical array. Figure 4 shows the pseudo-spatial spectrum 

obtained with the proposed iterative reweighted l1-norm 

method implemented on the coarray. We can clearly see 

that the coarray-based sparse reconstruction scheme has 

estimated the 14 sources accurately. Through empirical 

simulations, we maintain that the maximum number of 

estimated sources based on the difference coarray of the 

single CRPA is 14, instead of 28. This is due to the non-

identifiability property of partially augmentable arrays 
[12] and the mutual coherence of the dictionary for the 

sparse reconstruction [27].  

 
6.2 MINIMUM REDUNDANCY CONFIGURATION FOR 

MULTIPLE CRPA ARRAYS 

 

We consider four 8-element CRPA arrays and treat each as 

a unit element for the optimum placement design problem.   

The ‘linear’ configuration that provides the minimally 

redundant cross-differences and no overlap with the self-

differences is the 4-element MRA structure of Figure 1. 
The resulting physical array and corresponding coarray are 

shown in Figure 5. The center-to-center distance between 

the various CRPA arrays is an integer multiple of 0.8 

meters. We observe that in addition to the four concentric 

virtual arrays generated by the self-differences of each 

CPRA array, there are additional nine concentric arrays 

corresponding to the cross-differences. There are a total of 

741 distinct spatial lags (positive and negative) in the 

generated coarray. However, the maximum number of 

estimated sources is empirically determined to be 70 for 

the coarray based sparse reconstruction scheme for the 
same reasons mentioned in Section 6.1. The pseudo-spatial  



 
Figure 5 Linear MRA configuration of four CRPAs and the 

corresponding coarray. 

 
Figure 6 Pseudo-spatial spectrum of the coarray in Figure 5. 

spectrum with 70 uncorrelated signals uniformly 

distributed in  [0 ,360 ]  azimuth at 10 dB SNR is depicted 

in Figure 6 . We can see that all 70 sources have been 

correctly identified. However, some spurious peaks are 

also observed due to the sidelobe effect [26]. 

 
6.3 BOUNDARY ARRAY CONFIGURATION FOR 

MULTIPLE CRPA ARRAYS 

 
We arrange the four CRPA arrays into a two-by-two 

boundary configuration with  a center-to-center spacing of  

 
Figure 7 Boundary Configuration of four CRPAs and the 

corresponding coarray. 

 
Figure 8 Pseudo-Spatial Spectrum of the coarray in Figure 7. 

0.8 meters, as shown in Figure 7. This configuration is the 

same as in Figure 2   with the four antennas replaced by 

four CRPA arrays. The corresponding coarray, shown in 
Figure 7, consists of nine concentric virtual arrays 

arranged as a three-by-three square. The coarray aperture 

is twice that of the physical multiple-CRPA array 

configuration. There are a total of 513 distinct positive and 

negative spatial lags in the coarray, and the maximum 

number of estimated sources is determined to be 50 for the 

underlying scenario empirically. The sparse reconstruction 

based pseudo-spatial spectrum of 50 uncorrelated signals 

uniformly distributed in [0 ,360 ]   azimuth at 0 elevation 

is shown in Figure 8. Again, all the sources have been 

correctly estimated. 

 

7. EXPERIMENTAL RESULTS 

 

In this section, we present experimental results based on 
real GPS data. The interference-free data is collected with 

four 8-antenna CRPA arrays arranged in a two-by-two 

square configuration, as shown in Figure 9. The center-to-

center spacing between the CRPA arrays is 0.57 meters. 

The coarray corresponding to the experimental array is 

shown in Figure 10. We can see that there are overlapping 

self- and cross-differences in this configuration. As a result, 

the total number of distinct positive and negative spatial 

lags is 489, compared to 513 for the optimal configuration 

of Figure 7. Also, in  this  case,  the  maximum  number  of  



 
Figure 9 Relative positions of four CRPA arrays used in the 

experiment. 

 
Figure 10 Coarray of the experimental four CRPA arrays. 

estimated sources is 40, which is 10 smaller than that of 

the aforementioned boundary configuration.  
 

Using Matlab, we injected 40 closely spaced strong 
interfering signals in the acquired data. The pseudo-spatial 

spectrum based on the sparse reconstruction method is 

shown in Figure 11, which clearly resolves the 40 sources. 

 

8. MEAN-SQUARED ESTIMATION ERROR FOR 

VARIOUS CONFIGURATIONS 

 

We further investigate the performance of the 

aforementioned three multiple CRPA array configurations 

in terms of the variance of the DOA estimates. The mean 

squared error (MSE) of the sparse reconstruction method 
for the three configurations is provided in Table 1 under 

two different cases. Case 1 considers 20 uncorrelated 

sources uniformly distributed within [0 ,360 ] azimuth at 

0 elevation, while case 2 corresponds to 20 uncorrelated 

sources uniformly distributed within [0 ,180 ]  azimuth at 

0 elevation. The results are obtained with 100 Monte 
Carlo runs. The number of snapshots used to estimate the 

covariance matrix is chosen to be 1000. The SNR is 10dB.  

 

 

 
Figure 11 Pseudo-spatial spectrum of the coarray in Figure 10. 

Table 1 Mean squared estimation error (degrees) for the 
various considered configurations. 

 

Cases 

Configurations 

linear boundary experimental 

1 0.0215 0 0 

2 0.0095 0 0.0035 

 

We observe that the MSE decreases for the linear MRA 

configuration in the case where the sources are distributed 

within [0 ,180 ]  azimuth. However, the MSE for the 

boundary configuration exhibits very high accuracy in 

both cases. The experimental configuration of four CPRA 

arrays has an increasing MSE in case 2 compared with 

case 1. These observations are consistent with the fact that 

linear array configurations have an ambiguity cone [28], 

whereas the symmetric boundary configuration has 

uniform estimation accuracy in all directions, i.e. isotropic 

array configuration. For the experimental array, the limited 
resolution capability is the reason for higher MSE value in 

the second case. Comparing the linear MRA configuration 

with the experimental array, we conclude that the optimum 

array configuration for high resolution does not necessarily 

imply high estimation accuracy, which is also observed in 

[29]. Therefore, although the linear MRA configuration 

can resolve a higher number of sources compared to the 

boundary array, the optimum array for higher estimation 

accuracy is the boundary configuration. 
 

9. CONCLUSION 

 

In this paper, we investigated the problem of optimum 

placement of multiple CRPA arrays for DOA estimation of 

interferences in GNSS applications. The coarray based 

sparse configurations are adopted as the design principle, 
such as the MRA and the boundary array. Optimum 

placements of CRPA arrays are determined to be those that 

have reduced or minimally redundant cross-differences, 

which are distinct from the self-differences. Simulation 

results show that utilizing the coarray, which has a larger 

virtual aperture than the physical array, leads to accurate 

DOA estimation of a much higher number of sources than 

the number of physical sensors. This, in turn, yields 



improved anti-jamming capabilities and thus enhances the 

receiver signal-to-interference-plus-noise ratio. Further, 

different placements of multiple CRPA arrays offer 

different resolution capabilities for the coarray based 

sparse DOA estimation method, with the maximum 

number of resolvable sources provided by the 

configuration generating the highest number of distinct 

spatial lags in the coarray.   
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