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Abstract 

Through-the-Wall Radar imaging (TWRI) is emerging as a viable technology for providing high 

quality imagery of enclosed structures. TWRI makes use of electromagnetic waves to penetrate 

through building wall materials. Due to the “see” through ability, TWRI has attracted much 

attention in the last decade and has found a variety of important civilian and military 

applications. Signal processing algorithms have been devised to allow proper imaging and image 

recovery in the presence of high clutter, which is caused by front walls and multipath due to 

reflections from internal walls. Recently, research efforts have shifted towards effective and 

reliable imaging under constraints on aperture size, frequency, and acquisition time.  In this 

respect, scene reconstructions are being pursued with reduced data volume and within the 

emerging compressive sensing (CS) framework. In this paper, we present a review of the CS 

based scene reconstruction techniques that address the unique challenges associated with fast and 

efficient imaging in urban operations. Specifically, we focus on ground-based imaging systems 

for indoor targets. We discuss CS based wall mitigation, multipath exploitation, and change 

detection for imaging of stationary and moving targets inside enclosed structures. 

 

Keywords: Through-the-wall radar, sparse reconstruction, compressive sensing, change 

detection, multipath exploitation. 
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I. INTRODUCTION 

Through-the-wall radar imaging (TWRI) is an emerging technology that addresses the desire to 

see inside buildings using electromagnetic (EM) waves for various purposes, including 

determining the building layout, discerning the building intent and nature of activities, locating 

and tracking the occupants, and even identifying and classifying inanimate objects of interest 

within the building. TWRI is highly desirable for law enforcement, fire and rescue, and 

emergency relief, and military operations [1–6]. 

Applications primarily driving TWRI development can be divided based on whether 

information on motions within a structure or on imaging the structure and its stationary contents 

is sought out. The need to detect motion is highly desirable to discern about the building intent 

and in many fire and hostage situations. Discrimination of movements from background clutter 

can be achieved through change detection (CD) or exploitation of Doppler [7–24]. One-

dimensional motion detection and localization systems employ a single transmitter and receiver 

and can only provide range-to-motion, whereas two- and three-dimensional multi-antenna 

systems can provide more accurate localization of moving targets. The 3-D systems have higher 

processing requirements compared to 2-D systems. However, the third dimension provides 

height information, which permits distinguishing people from animals, such as household pets. 

This is important since radar cross section alone for behind-the-wall targets can be unreliable.  

Imaging of structural features and stationary targets inside buildings requires at least 2-D and 

preferably 3-D systems [25–43]. Because of the lack of any type of motion, these systems cannot 

rely on Doppler processing or CD for target detection and separation. Synthetic aperture radar 

(SAR) based approaches have been the most commonly used algorithms for this purpose. Most 

of the conventional SAR techniques usually neglect propagation distortions such as those 
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encountered by signals passing through walls [44]. Distortions degrade the performance and can 

lead to ambiguities in target and wall localizations. Free-space assumptions no longer apply after 

the EM waves propagate through the first wall. Without factoring in propagation effects, such as 

attenuation, reflection, refraction, diffraction, and dispersion, imaging of contents within 

buildings will be severely distorted. As such, image formation methods, array processing 

techniques, target detection, and image sharpening paradigms must work in concert and be 

reexamined in view of the nature and specificities of the underlying sensing problem. 

In addition to exterior walls, the presence of multipath and clutter can significantly 

contaminate the radar data leading to reduced system capabilities for imaging of building 

interiors and localization and tracking of targets behind walls. The multiple reflections within the 

wall result in wall residuals along the range dimension. These wall reverberations can be 

stronger than target reflections, leading to its masking and undetectability, especially for weak 

targets close to the wall [45]. Multipath stemming from multiple reflections of EM waves off the 

targets in conjunction with the walls may result in the power being focused at pixels different 

than those corresponding to the target. This gives rise to ghosts, which can be confused with the 

real targets inside buildings [46–49].  Further, uncompensated refraction through walls can lead 

to localization or focusing errors, causing offsets and blurring of imaged targets [26, 39]. SAR 

techniques and tomographic algorithms, specifically tailored for TWRI, are capable of making 

some of the adjustments for wave propagation through solid materials [26–30, 36–41, 50–57]. 

While such approaches are well suited for shadowing, attenuation, and refraction effects, they do 

not account for multipath as well as strong reflections from the front wall. 

The problems caused by the front wall reflections can be successfully tackled through wall 

clutter mitigation techniques. Several approaches have been devised, which can be categorized 
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into those based on estimating the wall parameters and others incorporating either wall 

backscattering strength or invariance with antenna location [39, 45, 58–61]. In [39, 58], a method 

to extract the dielectric constant and thickness of the non-frequency dependent wall from the 

time-domain scattered field was presented. The time-domain response of the wall was then 

analytically modeled and removed from the data. In [45], a spatial filtering method was applied 

to remove the dc component corresponding to the constant-type radar return, typically associated 

with the front wall. The third method, presented in [59–61], was based not only on the wall 

scattering invariance along the array but also on the fact that wall reflections are relatively 

stronger than target reflections. As a result, the wall subspace is usually captured in the most 

dominant singular values when applying singular value decomposition (SVD) to the measured 

data matrix. The wall contribution can then be removed by orthogonal subspace projection. 

Several methods have also been devised for dealing with multipath ghosts in order to provide 

proper representation of the ground truth. Earlier work attempted to mitigate the adverse effects 

stemming from multipath propagation [27]. Subsequently, research has been conducted to utilize 

the additional information carried by the multipath returns. The work in [49] considered 

multipath exploitation in TWRI, assuming prior knowledge of the building layout. A scheme 

taking advantage of the additional energy residing in the target ghosts was devised. An image 

was first formed, the ghost locations for each target were calculated, and then the ghosts were 

mapped back onto the corresponding target. In this way, the image became ghost-free with 

increased signal-to-clutter ratio (SCR). 

More recently, the focus of the TWRI research has shifted towards addressing constraints on 

cost and acquisition time in order to achieve the ultimate objective of providing reliable 

situational awareness through high-resolution imaging in a fast and efficient manner. This goal is 
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primarily challenged due to use of wideband signals and large array apertures. Most radar 

imaging systems acquire samples in frequency (or time) and space, and then apply compression 

to reduce the amount of stored information. This approach has three inherent inefficiencies. First, 

as the demands for high resolution and more accurate information increase, so does the number 

of data samples to be recorded, stored, and subsequently processed. Second, there are significant 

data redundancies not exploited by the traditional sampling process. Third, it is wasteful to 

acquire and process data samples that will be discarded later. Further, producing an image of the 

indoor scene using few observations can be logistically important, as some of the measurements 

in space and frequency or time can be difficult, unavailable, or impossible to attain. 

Towards the objective of providing timely actionable intelligence in urban environments, the 

emerging compressive sensing (CS) techniques have been shown to yield reduced cost and 

efficient sensing operations that allow super-resolution imaging of sparse behind-the-wall scenes 

[10, 62–76]. CS is a very effective technique for scene reconstruction from a relatively small 

number of data samples without compromising the imaging quality [77–89].  In general, the 

minimum number of data samples or sampling rate that is required for scene image formation is 

governed by the Nyquist theorem. However, when the scene is sparse, CS provides very efficient 

sampling, thereby significantly decreasing the required volume of data collected.  

In this paper, we focus on CS for TWRI and present a review of �� norm reconstruction 

techniques that address the unique challenges associated with fast and efficient imaging in urban 

operations.  Sections II to V deal with imaging of stationary scenes, whereas moving target 

localization is discussed in Sections VI and VII. More specifically, Section II deals with CS 

based strategies for stepped-frequency based radar imaging of sparse stationary scenes with 

reduced data volume in spatial and frequency domains. Prior and complete removal of clutter is 
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assumed, which renders the scene sparse. Section III presents CS solutions in the presence of 

front wall clutter. Wall mitigation in conjunction with application of CS is presented for the case 

when the same reduced frequency set is used from all of the employed antennas.  Section IV 

considers imaging of the building interior structures using a CS-based approach, which exploits 

prior information of building construction practices to form an appropriate sparse representation 

of the building interior layout.  Section V presents CS based multipath exploitation technique to 

achieve good image reconstruction in rich multipath indoor environments from few spatial and 

frequency measurements. Section VI deals with joint localization of stationary and moving 

targets using CS based approaches, provided that the indoor scene is sparse in both stationary 

and moving targets.  Section VII discusses a sparsity-based CD approach to moving target 

indication for TWRI applications, and deals with cases when the heavy clutter caused by strong 

reflections from exterior and interior walls reduces the sparsity of the scene.  Concluding 

remarks are provided in Section VIII. It is noted that for the sake of not overly complicating the 

notation, some symbols are used to indicate different variables over different sections of the 

paper. However, for those cases, these variables are redefined to reflect the change. 

The progress reported in this paper is substantial and noteworthy. However, many challenging 

scenarios and situations remain unresolved using the current techniques and, as such, further 

research and development is required. However, with the advent of technology that brings about 

better hardware and improved system architectures, opportunities for handling more complex 

building scenarios will definitely increase.    

II. CS STRATEGIES IN FREQUENCY AND SPATIAL DOMAINS FOR TWRI 

In this section, we apply CS to through-the-wall imaging of stationary scenes, assuming prior 

and complete removal of the front wall clutter [62, 63]. For example, if the reference scene is 
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known, then background subtraction can be performed for removal of wall clutter, thereby 

improving the sparsity of the behind-the-wall stationary scene. We assume stepped-frequency 

based SAR operation. We first present the through-the-wall signal model, followed by a 

description of the sparsity-based scene reconstruction, highlighting the key equations. It is noted 

that the problem formulation can be modified in a straightforward manner for pulsed operation 

and multistatic systems.  

A. Through-the-Wall Signal Model 

Consider a homogeneous wall of thickness d and dielectric constant ε located along the x-axis, 

and the region to be imaged located beyond the wall along the positive z-axis. Assume that an N-

element line array of transceivers is located parallel to the wall at a standoff distance zoff, as 

shown in Fig. 1. Let the nth transceiver, located at illuminate the scene with a 

stepped-frequency signal of M frequencies, which are equispaced over the desired bandwidth 

  

 1,,1,0     ,0 −=∆+= Mmmm Kωωω  (1) 

where  is the lowest frequency in the desired frequency band and  is the frequency step 

size. The reflections from any targets in the scene are measured only at the same transceiver 

location. Assuming the scene contains P point targets and the wall return has been completely 

removed, the output of the nth transceiver corresponding to the mth frequency is given by, 

 ∑
−

=

−=
1

0
, )exp(),(

P

p
npmp jnmy τωσ  (2) 

where  is the complex reflectivity of the pth target, and  is the two-way traveling time 

between the nth antenna and the target. It is noted that the complex amplitude due to free-space 

xn = (xn,−zoff ),
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path loss, wall reflection/transmission coefficients and wall losses, is assumed to be absorbed 

into the target reflectivity. The propagation delay  is given by [27–28, 40] 

  (3) 

where c is the speed of light in free-space,  is the speed through the wall, and the 

variables represent the traveling distances of the signal before, through, 

and beyond the wall, respectively, from the nth transceiver to the pth target. 

An equivalent matrix-vector representation of the received signals in (2) can be obtained as 

follows. Assume that the region of interest is divided into a finite number of pixels  in 

crossrange and downrange, and the point targets occupy no more than 
 
pixels. 

Let ,1,,1,0  ,1,,1,0 ),,( −=−= zx NlNklkr KK be a weighted indicator function, which takes the 

value  if the pth point target exists at the (k, l)-th pixel; otherwise, it is zero. With the values 

 lexicographically ordered into a column vector  of length  the received signal 

corresponding to the nth antenna can be expressed in matrix-vector form as, 

  (4) 

where  is a matrix of dimensions  and its mth row is given by, 

 [ ] [ ]nzNxNmnm jj

mn ee ),1(,00 −−−
=Ψ

τωτω
L  (5) 

Considering the measurement vector corresponding to all N antennas, defined as, 

  (6) 

the relationship between  is given by 

  (7) 
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where 

  (8) 

The matrix Ψ is a linear mapping between the full data y  and the sparse vector .r  

B. Sparsity-Based Data Acquisition and Scene Reconstruction 

The expression in (7) involves the full set of measurements made at the N array locations using 

the M frequencies. For a sparse scene, it is possible to recover  from a reduced set of 

measurements. Consider  which is a vector of length  consisting of elements 

chosen from  as follows, 

  (9) 

where  is a matrix of the form, 

 },,,{diag),(kron )1()1()0(

1

−⋅=Φ N
Q ϕϕϕϑ KI  (10) 

In (10), ‘kron’ denotes the Kronecker product,  is a  identity matrix,  is a 

measurement matrix constructed by randomly selecting  rows of an identity matrix, 

and ,1,,1,0  ,
)( −= Nn

n
Kϕ  is a measurement matrix constructed by randomly selecting 

 rows of an identity matrix. We note that determines the reduced antenna locations, 

whereas determines the reduced set of frequencies corresponding to the nth antenna location. 

The number of measurements  required to achieve successful CS reconstruction highly 

depends on the coherence between  For the problem at hand,  is the canonical basis 

and  is  similar to the Fourier basis,  which  have  been shown to exhibit maximal  incoherence  
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[80]. Given , we can recover  by solving the following equation
1
, 

  (11) 

We note that the problem in (11) can be solved using convex relaxation, greedy pursuit, or 

combinatorial algorithms [91–96]. In this section, we consider Orthogonal Matching Pursuit 

(OMP), which is known to provide a fast and easy to implement solution. Moreover, OMP is 

better suited when frequency measurements are used [95]. It is noted that the number of 

iterations of the OMP is usually associated with the level of sparsity of the scene. In practice, this 

piece of information is often unavailable a priori and the stopping condition is heuristic. 

Underestimating the sparsity would result in the image not being completely reconstructed 

(underfitting), while overestimation would cause some of the noise being treated as signal 

(overfitting).  Use of cross validation (CV) has been also proposed to determine the stopping 

condition for the greedy algorithms [97–99]. CV is a statistical technique that separates a data set 

into a training set and a cross validation set. The training set is used to detect the optimal 

stopping iteration. There is, however, a tradeoff between allocating the measurements for 

reconstruction or CV. More details can be found in [97, 98]. 

C.  Illustrative Results 

A through-the-wall wideband SAR system was set up in the Radar Imaging Lab at Villanova 

University. A 67-element line array with an inter-element spacing of 0.0187m, located along the 

x-axis, was synthesized parallel to a 0.14m thick solid concrete wall of length 3.05m and at a 

standoff distance equal to 1.24m. A stepped-frequency signal covering the 1-3 GHz frequency 

band with a step size of 2.75MHz was employed. Thus, at each scan position, the radar collects 

                                                 
1
 Ideally, minimization of the  �� norm would provide the sparsest solution. Unfortunately, it is NP-hard to solve the 

resulting minimization problem. The �� norm has been shown to serve as a good surrogate for ��	norm [90]. The ��-

minimization problem is convex, which can be solved in polynomial time.   

(
y r

r̂ = argmin r
l1

subject to 
(
y ≈ ΦΨr
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728 frequency measurements. A vertical metal dihedral was used as the target and was placed at 

(0, 4.4)m on the other side of the front wall. The size of each face of the dihedral is 0.39m by 

0.28m. The back and the side walls of the room were covered with RF absorbing material to 

reduce clutter. The empty scene without the dihedral target present was also measured to enable 

background subtraction for wall clutter removal.  

The region to be imaged is chosen to be 4.9m × 5.4m centered at (0, 3.7)m and divided into 

33 × 73 pixels, respectively. For CS, 20% of the frequencies and 51% of the array locations were 

used, which collectively represent 10.2% of the total data volume. Figs. 2(a) and 2(c) depict the 

images corresponding to the full dataset obtained with backprojection and 1l norm reconstruction, 

respectively. Figs. 2(b) and 2(d) show the images corresponding to the measured scene obtained 

with backprojection and 1l norm reconstruction, respectively, applied to the reduced background 

subtracted dataset. In Figure 2 and all subsequent figures in this paper, we plot the image 

intensity with the maximum intensity value in each image normalized to 0dB. The true target 

position is indicated with a solid red rectangle. We observe that, with the availability of the 

empty scene measurements, background subtraction renders the scene sparse and thus, CS based 

approach generates an image using reduced data where the target can be easily identified. On the 

other hand, backprojection applied to reduced dataset results in performance degradation, 

indicated by the presence of many artifacts in the corresponding image. OMP was used to 

generate the CS images. For this particular example, the number of OMP iterations was set to 5.  

III. EFFECTS OF WALLS ON COMPRESSIVE SENSING SOLUTIONS  

The application of CS for TWRI as presented in Section II assumed prior and complete removal 

of front wall EM returns. Without this assumption, strong wall clutter, which extends along the 

range dimension, reduces the sparsity of the scene and, as such, impedes the application of CS 
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[71–73]. Having access to the background scene is not always possible in practical applications. 

In this section, we apply joint CS and wall mitigation techniques using reduced data 

measurements. In essence, we address wall clutter mitigations in the context of CS.  

There are several approaches, which successfully mitigate the front wall contribution to the 

received signal [39, 45, 58–61]. These approaches were originally introduced to work on the full 

data volume and did not account for reduced data measurements especially randomly. We 

examine the performance of the subspace projection wall mitigation technique [60] in 

conjunction with sparse image reconstruction. Only a small subset of measurements is employed 

for both wall clutter reduction and image formation. We consider the case where the same subset 

of frequencies is used for each employed antenna. Wall clutter mitigation under use of different 

frequencies across the employed antennas is discussed in [68, 73]. It is noted that, although not 

reported in this paper, the spatial filtering based wall mitigation scheme [45] in conjunction with 

CS provides a similar performance to the subspace projection scheme [73]. 

A.   Wall Clutter Mitigation 

We first extend the through-the-wall signal model of (2) to include the front wall return. Without 

the assumption of prior wall return removal, the output of the nth transceiver corresponding to 

the mth frequency for a scene of P point targets is given by, 

  (12) 

where  is the complex reflectivity of the wall, and  is the two-way traveling time of the 

signal from the nth antenna to the wall, and is given by 

  (13) 

y(m, n) = σ w exp(− jωmτ w )+ σ p exp(− jωmτ p,n )
p=0

P−1

∑

σ w τ w

τ w =
2zoff

c
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It is noted that both the target and wall reflectivities in (12) are assumed to be independent of 

frequency and aspect angle. Many of the walls and indoor targets, including humans, have 

dependency of their reflection coefficients on frequency, which could also be a function of angle 

and polarization. This dependency, if neglected, could be a source of error. The latter, however, 

can be tolerated for relatively limited aperture and bandwidth. Further note that we assume a 

simple scene of P point targets behind a front wall. The model can be extended to incorporate 

returns from more complex scenes involving multiple walls and room corners. These extensions 

are discussed in later sections. 

From (12), we note that  does not vary with the antenna location since the array is parallel 

to the wall. Furthermore, as the wall is homogeneous and assumed to be much larger than the 

beamwidth of the antenna, the first term in (12) assumes the same value across the array 

aperture. Unlike , the time delay , given by (3), is different for each antenna location, 

since the signal path from the antenna to the target is different from one antenna to the other. 

The signals received by the N antennas at the M frequencies are arranged into an M × N 

matrix, Y, 

  (14) 

where  is the M ×1 vector containing the stepped-frequency signal received by the nth 

antenna,  

  (15) 

with  given by (12). The eigen-structure of the imaged scene is obtained by performing 

the SVD of Y, 

  (16) 

τ w

τ w
τ p,n

Y = y0 L yn L yN−1






yn

yn = y(0,n) L y(m,n) L y(M −1, n)





T

y(m, n)

Y = UΛV
H
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where ‘H’ denotes the Hermitian transpose, U and V are unitary matrices containing the left and 

right singular vectors, respectively, and Λ  is a diagonal matrix 
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 (17) 

and Nλλλ ≥≥≥ K21  are the singular values. Without loss of generality, the number of 

frequencies are assumed to exceed the number of antenna locations, i.e., M > N. The subspace 

projection method assumes that the wall returns and the target reflections lie in different 

subspaces. Therefore, the first K dominant singular vectors of the Y matrix are used to construct 

the wall subspace, 

  (18) 

Methods for determining the dimensionality K of the wall subspace have been reported in [59, 

60]. The subspace orthogonal to the wall subspace is, 

  (19) 

where I is the identity matrix. To mitigate the wall returns, the data matrix Y is projected on the 

orthogonal subspace [60],  

  (20) 

The resulting data matrix has little or no contribution from the front wall.  

C.  Joint Wall Mitigation and CS 

Subspace projection method for wall clutter reduction relies on the fact that the wall reflections 

are strong and assume very close values at the different antenna locations. When the same set of 

frequencies is employed for all employed antennas, the condition of spatial invariance of the wall 

Swall = uivi

H

i=1

K

∑

S⊥
wall = I − SwallS

H

wall

%Y = S⊥
wallY
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reflections is maintained [72, 73]. This permits direct application of the subspace projection 

method as a preprocessing step to the  norm based scene reconstruction of (11). 

D.  Illustrative Results 

We consider the same experimental setup as in Section III.C. Fig. 3(a) shows the result obtained 

with  norm reconstruction using 10.2% of the raw data volume without background 

subtraction. The number of OMP iterations was set to 100. Comparing Fig. 3(a) and the 

corresponding background subtracted image of Fig. 2(d), it is evident that in the absence of 

access to the background scene, the wall mitigation techniques must be applied, as a 

preprocessing step, prior to CS in order to detect the targets behind the wall.  

First, we consider the case when the same set of reduced frequencies is used for a reduced set 

of antenna locations. We employ only 10.2% of the data volume, i.e., 20% of the available 

frequencies and 51% of the antenna locations. The subspace projection method is applied to a Y 

matrix of reduced dimension .34146×  The corresponding  norm reconstructed image obtained 

with OMP is depicted in Fig. 3(b).  It is clear that, even when both spatial and frequency 

observations are reduced, the joint application of wall clutter mitigation and CS techniques 

successfully provides front wall clutter suppression and unmasking of the target.  

IV. DESIGNATED DICTIONARY FOR WALL DETECTION 

In this section, we address the problem of imaging building interior structures using a reduced set 

of measurements. We consider interior walls as targets of interest and attempt to reveal the 

building interior layout based on CS techniques. We note that construction practices suggest the 

exterior and interior walls to be parallel or perpendicular to each other. This enables sparse scene 

representations using a dictionary of possible wall orientations and locations [76]. Conventional 

l1

l1

l1
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CS recovery algorithms can then be applied to reduced number of observations to recover the 

positions of various walls, which is a primary goal in TWRI.  

A.  Signal Model under Multiple Parallel Walls 

Considering a monostatic stepped-frequency SAR system with N antenna positions located 

parallel to the front wall, as shown in Fig. 1, we extend the signal model in (12) to include 

reflections from multiple parallel interior walls, in addition to the returns from the front wall and 

the P point targets. That is, the received signal at the nth antenna location corresponding to the 

mth frequency can be expressed as, 

 ∑∑
−

=

−

=

−+−+−=
1

0

1

0
, )exp()exp()exp(),(

w

ii

I

i
wmw

P

p
npmpwmw jjjnmy τωστωστωσ  (21) 

where wI  is the number of interior walls parallel to the array axis, 
iwτ  represents the two-way 

traveling time of the signal from the nth antenna to the ith interior wall and 
iwσ  is the complex 

reflectivity of the ith interior wall. Similar to the front wall, the delays 
iwτ  are independent of the 

variable n, as evident in the subscripts.  

Note that the above model contains contributions only from interior walls parallel to the front 

wall and the antenna array. This is because, due to the specular nature of the wall reflections, a 

SAR system located parallel to the front wall will only be able to receive direct returns from 

walls which are parallel to the front wall. The detection of perpendicular walls is possible by 

concurrently detecting and locating the canonical scattering mechanism of corner features 

created by the junction of walls of a room or by having access to another side of the building. 

Extension of the signal model to incorporate corner returns is reported in [76].   
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Instead of the point-target based sensing matrix described in (7), where each antenna 

accumulates the contributions of all the pixels, we use an alternate sensing matrix, proposed in 

[68], to relate the scene vector, ,r  and the observation vector, .y  This matrix underlines the 

specular reflections produced by the walls. Due to wall specular reflections, and since the array 

is assumed parallel to the front wall and, thus, parallel to interior walls, the rays collected at the 

nth antenna will be produced by portions of the walls that are only in front of this antenna (see 

Fig. 4(a)). The alternate matrix, therefore, only considers the contributions of the pixels that are 

located in front of each antenna. In so doing, the returns of the walls located parallel to the array 

axis are emphasized. As such, it is most suited to the specific building structure imaging 

problem, wherein the signal returns are mainly caused by EM reflections of exterior and interior 

walls. The alternate linear model can be expressed as 

 ry Ψ=  (22) 

where 

 [ ]T
N

TT
110 −ΨΨΨ=Ψ K  (23) 

with nΨ defined as, 

  [ ] [ ])1,1()0,0(

]),1,1[(]),0,0[(
−−−

−−

−
ℑℑ=Ψ zNxNm

zx

m j

nNN

j

nmn ee
τωτω

K  (24) 

In (24), lk ,τ  is the two-way signal propagation time associated with the downrange of the (k, l)th 

pixel, and the function ]),,[( nlkℑ works as an indicator function in the following way, 

  


=ℑ

otherwise0
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That is, if nk xx  and 
 
represent the crossrange coordinates of the (k, l)th pixel and the nth antenna 

location, respectively, and x∂
 
is the crossrange sampling step, then 1]),,[( =ℑ nlk  provided that 

22 x/xx x/-x knk ∂+≤≤∂  (see Fig. 4(b)). 

B.  Sparsifying Dictionary for Wall Detection 

Since the number of parallel walls is typically much smaller compared to the downrange extent 

of the building, the decomposition of the image into parallel walls can be considered as sparse. 

Note that although other indoor targets, such as furniture and humans, may be present, their 

projections onto the horizontal lines are expected to be negligible compared to those of the walls. 

In order to obtain a linear matrix-vector relation between the scene and the horizontal 

projections, we define a sparsifying matrix R composed of possible wall locations. Specifically, 

each column of the dictionary R represents an image containing a single wall of length xl  pixels, 

located at a specific crossrange and at a specific downrange in the image. Consider the 

crossrange to be divided into cN  non-overlapping blocks of xl  pixels each (see Fig. 5(a)), and 

the downrange division defined by the pixel grid. The number of blocks cN  is determined by the 

value of xl , which is the minimum expected wall length in the scene. Therefore, the dimension 

of R is ,zczx NNNN × where the product zc NN  denotes the number of possible wall locations. 

Figure 5(b) shows a simplified scheme of the sparsifying dictionary generation. The projection 

associated with each wall location is given by, 

  ∑
∈

=
][
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b
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l
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where ][bB indicates the bth crossrange block and .,,2,1 cNb K=  Defining 
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the linear system of equations relating the observed data y and the sparse vector g is given by, 

 Rgy Ψ=  (28) 

In practice and by the virtue of collecting signal reflections corresponding to the zero aspect 

angle, any interior wall outside the synthetic array extent will not be visible to the system. 

Finally, the CS image in this case is obtained by first recovering the projection vector g using 1l  

norm minimization with a reduced set of measurements and then forming the product Rg. 

It is noted that we are implicitly assuming that the extents of the walls in the scene are integer 

multiples of the block of xl  pixels. In case this condition is not satisfied, the maximum error in 

determining the wall extent will be at most equal to the chosen block size. Note that 

incorporation of the corner effects will help resolve this issue, since the localization of corners 

will identify the wall extent [76]. 

C.  Illustrative Results 

A through-the-wall SAR system was set up in the Radar Imaging Lab, Villanova University. A 

stepped-frequency signal consisting of 335 frequencies covering the 1 to 2 GHz frequency band 

was used for interrogating the scene. A monostatic synthetic aperture array, consisting of 71-

element locations with an inter-element spacing of 2.2cm, was employed. The scene consisted of 

two parallel plywood walls, each 2.25cm thick, 1.83m wide, and 2.43m high. Both walls were 

centered at 0m in crossrange. The first and the second walls were located at respective distances 

of 3.25m and 5.1m from the antenna baseline. Figure 6(a) depicts the geometry of the 

experimental scene.  

The region to be imaged is chosen to be 5.65m (crossrange) × 4.45m (downrange), centered 

at (0, 4.23)m, and is divided into 128 × 128 pixels. For the CS approach, we use a uniform subset 

of only 84 frequencies at each of the 18 uniformly spaced antenna locations, which represent 
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6.4% of the full data volume. The CS reconstructed image is shown in Fig. 6(b). We note that the 

proposed algorithm was able to reconstruct both walls. However, it can be observed in Fig. 6(b) 

that ghost walls appear immediately behind each true wall position. These ghosts are attributed 

to the dihedral-type reflections from the wall-floor junctions. 

V. CS AND MULTIPATH EXPLOITATION  

In this section, we consider the problem of multipath in view of the requirements of fast data 

acquisition and reduced measurements. Multipath ghosts may cast a sparse scene as a populated 

scene, and at minimum will render the scene less sparse, degrading the performance of CS based 

reconstruction. A CS method that directly incorporates multipath exploitation into sparse signal 

reconstruction for imaging of stationary scenes with a stepped-frequency monostatic SAR is 

presented. Assuming prior knowledge of the building layout, the propagation delays 

corresponding to different multipath returns for each assumed target position are calculated, and 

the multipath returns associated with reflections from the same wall are grouped together and 

represented by one measurement matrix. This allows CS solutions to focus the returns on the true 

target positions without ghosting. Although not considered in this section, it is noted that the 

clutter due to front wall reverberations can be mitigated by adapting a similar multipath 

formulation, which maps back multiple reflections within the wall after separating wall and 

target returns [100]. 

A.  Multipath Propagation Model 

We refer to the signal that propagates from the antenna through the front wall to the target and 

back to the antenna as the direct target return. Multipath propagation corresponds to indirect 

paths, which involve reflections at one or more interior walls by which the signal may reach the 

target. Multipath can also occur due to reflections from the floor and ceiling and interactions 
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among different targets. In considering wall reflections and assuming diffuse target scattering, 

there are two typical cases for multipath. In the first case, the wave traverses a path that consists 

of two parts; one part is the propagation path to the target and back to the receiver, and the other 

part is a round trip path from the target to an interior wall. As the signal weakens at each 

secondary wall reflection, this case can usually be neglected. Furthermore, except when the 

target is close to an interior wall, the corresponding propagation delay is high, and, most likely, 

would be equivalent to the direct-path delay of a target that lies outside the perimeter of the room 

being imaged. Thus, if necessary, this type of multipath can be gated out. The second case is a 

bistatic scattering scenario, where the signal propagation on transmit and receive takes place 

along different paths. This is the dominant case of multipath with one of the paths being the 

direct propagation, to or from the target, and the other involving a secondary reflection at an 

interior wall.  

Other higher-order multipath returns are possible as well. Signals reaching the target can 

undergo multiple reflections within the front wall. We refer to such signals as wall ringing 

multipath. Also, the reflection at the interior wall can occur at the outer wall-air interface. This 

will result, however, in additional attenuation and, therefore, can be neglected.  In order to derive 

the multipath signal model, we assume perfect knowledge of the front wall, i.e. location, 

thickness, and dielectric constant, as well as the location of the interior walls.  

A.1. Interior Wall Multipath 

Consider the antenna-target geometry illustrated in Fig. 7(a), where the front wall has been 

ignored for simplicity. The pth target is located at ),,( ppp zx=x  and the interior wall is parallel 

to the z-axis and located at .wxx =  Multipath propagation consists of the forward propagation 

from the nth antenna to the target along the path P ′′ and the return from the target via a reflection 
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at the interior wall along the path .P ′  Assuming specular reflection at the wall interface, we 

observe from Fig. 7(a) that reflecting the return path about the interior wall yields an alternative 

antenna-target geometry. We obtain a virtual target located at ),,2( ppwp zxx −=′x  and the delay 

associated with path P ′  is the same as that of the path P
~

′ from the virtual target to the antenna. 

This correspondence simplifies the calculation of the one-way propagation delay )(
,
P′
npτ  associated 

with path .P ′  It is noted that this principle can be used for multipath via any interior wall. 

From the position of the virtual target of an assumed target location, we can calculate the 

propagation delay along path P′  as follows. Under the assumption of free space propagation, the 

delay can be simply calculated as the Euclidean distance from the virtual target to the receiver 

divided by the propagation speed of the wave. In the TWRI scenario, however, the wave has to 

pass through the front wall on its way from the virtual target to the receiver. As the front wall 

parameters are assumed to be known, the delay can be readily calculated from geometric 

considerations using Snell’s law [28]. 

A.2. Wall Ringing Multipath 

The effect of wall ringing on the target image can be delineated through Fig. 7(b), which depicts 

the wall and the incident, reflected, and refracted waves. The distance between the target and the 

array element in crossrange direction, ,x∆  can be expressed as 

 wallwair iddzx θθ tan)21(tan)( ++−∆=∆  (29) 

where z∆  is the distance between target and array element in downrange direction, and 

wallair θθ  and are the angles in the air and in the wall medium, respectively. The integer wi  

denotes the number of internal reflections within the wall. The case wi  = 0 describes the direct 

path as derived in [28]. From Snell’s law, 
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Equations (29) and (30) form a nonlinear system of equations that can be solved numerically for 

the unknown angles, e.g., using the Newton method. Having the solution for the incidence and 

refraction angles, we can express the one-way propagation delay associated with the wall ringing 

multipath as [101] 
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B.  Received Signal Model 

Having described the two principal multipath mechanisms in TWRI, namely the interior wall and 

wall ringing types of multipath, we are now in a position to develop a multipath model for the 

received signal. We assume that the front wall returns have been suppressed and the measured 

data contains only the target returns. The case with the wall returns present in the measurements 

is discussed in [100]. 

Each path P  from the transmitter to a target and back to receiver can be divided into two 

parts, P ′  and ,P ′′ where P ′′  denotes the partial path from the transmitter to the scattering target 

and P ′  is the return path back to the receiver. For each target-transceiver combination, there 

exist a number of partial paths due to the interior wall and wall ringing multipath phenomena. 

Let ,1,,1,0 , 111
−=′ Rii KP and ,1,,1,0 , 222

−=′′ Rii KP denote the feasible partial paths. Any 

combination of 
1i

P ′  and 
2i

P ′′
 results in a round-trip path .1,,1,0 , −= Rii KP  We can establish a 

function that maps the index i of the round-trip path to a pair of indices of the partial paths, 

)., ( 21 iii a  Hence, we can determine the maximum number 21RRR ≤ of possible paths for each 

target-transceiver pair. Note that, in practice, ,21RRR <<  as some round-trip paths may be equal 
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due to symmetry while some others could be strongly attenuated, and, thereby can be neglected. 

We follow the convention that 0P  refers to the direct round-trip path. 

The round-trip delay of the signal along path iP , consisting of the partial parts 
1i

P ′  and ,
2i

P ′′

can be calculated as 

  )(
,

)(
,

)(
,

21 i
np

i
np

i
np τττ +=  (32) 

We also associate a complex amplitude )(i
pw

 
for each possible path corresponding to the pth 

target, with the direct path, which is typically the strongest in TWRI, having .1)0( =pw  

Without loss of generality, we assume the same number of propagation paths for each target. 

The unavailability of a path for a particular target is reflected by a corresponding path amplitude 

of zero. The received signal at the nth antenna due to the mth frequency can, therefore, be 

expressed as 
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As the bistatic radar cross section (RCS) of a target could be different from its monostatic RCS, 

the target reflectivity is considered to be dependent on the propagation path. For convenience, 

the path amplitude )(i
pw  (33) can be absorbed into the target reflectivity ,)(i

pσ  leading to 
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Note that (34) is a generalization of the non-multipath propagation model (2). If the number of 

propagation paths is set to 1, then the two models are equivalent. 

The matrix-vector form for the received signal under multipath propagation is given by 

 )1()1()1()1()0()0( −−Ψ++Ψ+Ψ= RR
rrry K  (35) 

where 
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The term  ,1,,1,0 ,)( −= zx
i

q NNqr K takes the value )(i
pσ   if the pth point target exists at the qth 

pixel; otherwise, it is zero. Finally, the reduced measurement vector y
(

 

can be obtained from (35) 

as ,yy Φ=
(

 

where the matrix Φ is defined in (10). 

C.  Sparse Scene Reconstruction with Multipath Exploitation  

Within the CS framework, we aim at undoing the ghosts, i.e., inverting the multipath 

measurement model and achieving a reconstruction, wherein only the true targets remain.  

In practice, any prior knowledge about the exact relationship between the various sub-images 

)(i
r of the sparse scene is either limited or nonexistent. However, we know with certainty that the 

sub-images )1()1()0(
,,,

−R
rrr K describe the same underlying scene. That is, the support of the R 

images is the same, or at least approximately the same. The common structure property of the 

sparse scene suggests the application of a group sparse reconstruction.  

All unknown vectors in (35) can be stacked to form a tall vector of length RNN zx  
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 (37) 

The reduced measurement vector y
(

 can then be expressed as 

 rBy
r(

=  (38) 

where [ ])1()1()0( −ΦΨΦΨΦΨ= R
LB  has dimensions .21 RNNQQ zx×  

Q1Q2 × MN
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We proceed to reconstruct the images r
r

 from y
(

 under measurement model (38). It has been 

shown that a group sparse reconstruction can be obtained by a mixed 21 ll − norm regularization 

[102–105]. Thus, we solve 
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2

22

1
minargˆ rrByr

r

rr(r
r α+−=  (39) 

where α  is the so-called regularization parameter and 
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is the mixed �� − �� norm. As defined in Eq. (40), the mixed �� − �� norm behaves like an �� 

norm on the vector �[	
���, 	
���,⋯ , 	
�����]��� , � = 0,1,⋯ ,���� − 1, and therefore, induces group 

sparsity. In other words, each �[	
���, 	
���,⋯ , 	
�����]���,		and equivalently each 

[	
���, 	
���,⋯ , 	
�����]� ,	is encouraged to be set to zero. On the other hand, within the groups, the �� 

norm does not promote sparsity [106]. The convex optimization problem (39) can be solved 

using SparSA [102], YALL group [103], or other available schemes [105, 107].  

Once a solution r̂
r

 

is obtained, the sub-images can be noncoherently combined to form an 

overall image with improved signal-to-noise-and-clutter ratio (SCNR), with the elements of the 

composite image GSr̂  defined as 

 [ ] [ ] .1,,0     ,,,,ˆ
2

)1()1()0( −== −
zx

TR
qqqqGS NNqrrr KKr  (41) 

D.  Illustrative Results 

An experiment was conducted in a semi-controlled environment at the Radar Imaging Lab, 

Villanova University. A single aluminum pipe (61 cm long, 7.6 cm diameter) was placed upright 

on a 1.2 m high foam pedestal at 3.67 m downrange and 0.31 m crossrange, as shown in Fig. 8. 
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A 77-element uniform linear monostatic array with an inter-element spacing of 1.9 cm was used 

for imaging. The origin of the coordinate system is chosen to be at the center of the array. The 

0.2 m thick concrete front wall was located parallel to the array at 2.44 m downrange. The left 

sidewall was at a crossrange of -1.83 m, whereas the back wall was at 6.37 m downrange (See 

Fig. 8). Also, there was a protruding corner on the right at 3.4 m crossrange and 4.57 m 

downrange. A stepped-frequency signal, consisting of 801 equally spaced frequency steps 

covering the 1 to 3 GHz band was employed. The left and right side walls were covered with RF 

absorbing material, but the protruding right corner and the back wall were left uncovered.  

We consider background subtracted data to focus only on target multipath.  Figure 9(a) 

depicts the backprojection image using all available data. Apparently, only the multipath ghosts 

due to the back wall, and the protruding corner in the back right are visible. Hence, we only 

consider these two multipath propagation cases for the group sparse CS scheme. We use 25% of 

the array elements and 50% of the frequencies. The corresponding CS reconstruction is shown in 

Fig. 9(b). The multipath ghosts have been clearly suppressed.  

VI. CS-BASED CHANGE DETECTION FOR MOVING TARGET LOCALIZATION 

In this section, we consider sparsity-driven CD for human motion indication in TWRI 

applications. CD can be used in lieu of Doppler processing, wherein motion detection is 

accomplished by subtraction of data frames acquired over successive probing of the scene. In so 

doing, CD mitigates the heavy clutter that is caused by strong reflections from exterior and 

interior walls and also removes stationary objects present in the enclosed structure, thereby 

rendering a densely populated scene sparse [7, 9–10]. As a result, it becomes possible to exploit 

CS techniques for achieving reduction in the data volume. We assume a multistatic imaging 

system with physical transmit and receive apertures and a wideband transmit pulse. We establish 
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an appropriate CD model for translational motion that permits formulation of linear modeling 

with sensing matrices, so as to apply CS for scene reconstruction. Other types of human motions 

involving sudden short movements of the limbs, head, and/or torso are discussed in [70]. 

A.  Signal Model 

Consider wideband radar operation with M transmitters and N receivers. A sequential 

multiplexing of the transmitters with simultaneous reception at multiple receivers is assumed. As 

such, a signal model can be developed based on single active transmitters. We note that the 

timing interval for each data frame is assumed to be a fraction of a second so that the moving 

target appears stationary during each data collection interval. 

Let )(tsT  be the wideband baseband signal used for interrogating the scene. For the case of a 

single point target with reflectivity ,pσ
 
located at ),( ppp zx=x

 
behind a wall, the pulse emitted 

by the mth transmitter with phase center at ),( offtmtm zx −=x
 
is received at the nth receiver with 

phase center at ),( offrnrn zx −=x in the form 

 )exp()()(   ),()()( ,, mnpcmnpTpmnmnmnmn jtstatbtaty τωτσ −−=+=   (42) 

where cω  is the carrier frequency, mnp,τ
 
is the propagation delay for the signal to travel between 

the mth transmitter, the target at ,px and the nth receiver, and )(tbmn  
represents the contribution 

of the stationary background at the nth receiver with the mth transmitter active. The delay mnp,τ
 

consists of the components corresponding to traveling distances before, through, and after the 

wall, similar to (3).  
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In its simplest form, CD is achieved by coherent subtraction of the data corresponding to two 

data frames, which may be consecutive or separated by one or more data frames. This 

subtraction operation is performed for each range bin. CD results in the set of difference signals,  

 )()( )()()( )1()1()1()1( tatatytyty mn
L

mnmn
L

mnmn −=−= ++δ   (43) 

where L denotes the number of frames between the two time acquisitions. The component of the 

radar return from the stationary background is the same over the two time intervals, and is thus 

removed from the difference signal. Using (42) and (43), the (m, n)-th difference signal can be 

expressed as, 

 )exp()()exp()()( )1(
,

)1(
,

)1(
,

)1(
, mnpcmnpTp

L
mnpc

L
mnpTpmn jtsjtsty τωτστωτσδ −−−−−= ++   (44) 

where )1(
,mnpτ  and )1(

,
+L
mnpτ  are the respective two-way propagation delays for the signal to travel 

between the mth transmitter, the target,  and the nth receiver, during the first and the second data 

acquisitions, respectively.  

B.  Sparsity-Driven Change Detection under Translational Motion 

Consider the difference signal in (44) for the case where the target is undergoing translational 

motion. Two nonconsecutive data frames with relatively long time difference are used, i.e.

1>>L  [108]. In this case, the target will change its range gate position during the time elapsed 

between the two data acquisitions. As seen from (44), the moving target will present itself as two 

targets, one corresponding to the target position during the first time interval and the other 

corresponding to the target location during the second data frame. It is noted that the imaged 

target at the reference position corresponding to the first data frame cannot be suppressed for the 

coherent CD approach. On the other hand, the noncoherent CD approach that deals with 

differences of image magnitudes corresponding to the two data frames, allows suppression of the 

reference image through a zero thresholding operation [23]. However, as the noncoherent 
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approach requires the scene reconstruction to be performed prior to CD, it is not a feasible option 

for sparsity-based imaging, which relies on coherent CD to render the scene sparse. Therefore, 

we rewrite (44) as, 

 ∑
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If we sample the difference signal )(tymnδ  at times 1
0}{ −

=
K
kkt to obtain the 1×K  vector mn∆y  and 

form the concatenated 1×zx NN  scene reflectivity vector ,r  then using the developed signal 

model in (45), we obtain the linear system of equations, 

 r∆y mnmn Ψ=   (47) 

The qth column of mnΨ  consists of the received signal corresponding to a target at pixel qx  and 

the kth element of the qth column can be written as [70, 83] 
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where mnq,τ is the two-way signal traveling time from the mth transmitter to the qth pixel and 

back to the nth receiver. Note that the kth element of the vector mnq,s is ),( ,mnqkT ts τ−  which 

implies that the denominator in the R.H.S. of (48) is the energy in the time signal. Therefore, 

each column of mnΨ
 
has unit norm. Further note that if there is a target at the qth pixel, the value 

of the qth element of r  should be ;~
qσ   otherwise, it is zero. 
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The CD model described in (47-48) permits the scene reconstruction within the CS 

framework. We measure a J (<< K) dimensional vector of elements randomly chosen from 

.mn∆y  The new measurements can be expressed as 

 r∆yy mnmnmnmnmn Ψ==∆ ϕϕ
(

  (49) 

where mnϕ  is a KJ × measurement matrix. Several types of measurement matrices have been 

reported in the literature [[83], [86], [109] and the references therein]. To name a few, a 

measurement matrix whose elements are drawn from a Gaussian distribution, a measurement 

matrix having random ±1 entries with probability of 0.5, or a random matrix whose entries can 

be constructed by randomly selecting rows of a KK × identity matrix. It was shown in [83] that 

the measurement matrix with random ±1 elements requires the least amount of compressive 

measurements for the same radar imaging performance, and permits a relatively straight forward 

data acquisition implementation. Therefore, we choose to use such a measurement matrix in 

image reconstructions.  

Given mny
(

∆  for ,1,,1,0  ,110 −=−= Nn,M,,m KK  we can recover  by solving the 

following equation, 
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Equations (50, 51) represent one strategy that can be adopted for sparsity-based CD approach, 

wherein a reduced number of time samples are chosen randomly for all the transmitter-receiver 

r
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pairs constituting the array apertures. The above two equations can also be extended so that the 

reduction in data measurements includes both spatial and time samples. The latter strategy is not 

considered in this section.  

C.  Illustrative Results 

A through-the-wall wideband pulsed radar system was used for data collection in the Radar 

Imaging Lab at Villanova University. The system uses a 0.7ns Gaussian pulse for scene 

interrogation. The pulse is up-converted to 3 GHz for transmission and down-converted to 

baseband through in-phase and quadrature demodulation on reception. The system operational 

bandwidth from 1.5 – 4.5 GHz provides a range resolution of 5cm. The peak transmit power is 

25dBm. Transmission is through a single horn antenna, which is mounted on a tripod.  An 8-

element line array with an inter-element spacing of 0.06m, is used as the receiver and is placed to 

the right of the transmit antenna. The center-to-center separation between the transmitter and the 

leftmost receive antenna is 0.28m, as shown in Fig. 10. A 3.65m × 2.6m wall segment was 

constructed utilizing 1cm thick cement board on a 2-by-4 wood stud frame. The transmit antenna 

and the receive array were at a standoff distance of 1.19m from the wall.  The system refresh rate 

is 100Hz.  

In the experiment, a person walked away from the wall in an empty room (the back and the 

side walls were covered with RF absorbing material) along a straight line path. The path is 

located 0.5m to the right of the center of the scene, as shown in Fig. 10. The data collection 

started with the target at position 1 and ended after the target reached position 3, with the target 

pausing at each position along the trajectory for a second. Consider the data frames 

corresponding to the target at position 2 and position 3. Each frame consists of 20 pulses, which 

are coherently integrated to improve the signal-to-noise ratio.  The imaging region (target space) 
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is chosen to be 3m × 3m, centered at (0.5m, 4m), and divided into 61 × 61 grid points in 

crossrange and downrange, resulting in 3721 unknowns. The space-time response of the target 

space consists of 8 × 1536 space-time measurements.  For sparsity-based CD, only 5% of the 

1536 time samples are randomly selected at each of the 8 receive antenna locations, resulting in 

8 × 77 space-time measured data. Figure 11 depicts the corresponding result. We observe that, as 

the human changed its range gate position during the time elapsed between the two acquisitions, 

it presents itself as two targets in the image, and is correctly localized at both of its positions. 

VII. CS GENERAL FORMULATION FOR STATIONARY AND MOVING TARGETS 

As seen in the previous sections, the presence of the front wall renders the target detection 

problem very difficult and challenging, and has an adverse effect on the scene reconstruction 

performance when employing CS. Different strategies have been devised for suppression of the 

wall clutter to enable target detection behind walls.  Change detection enables detection and 

localization of moving targets. Clutter cancellation filtering provides another option [87, 110]. 

However, along with the wall clutter, both of these methods also suppress the returns from the 

stationary targets of interest in the scene, and as such, allow subsequent application of CS to 

recover only the moving targets.  Wall clutter mitigation methods can be applied to remove the 

wall and enable joint detection of stationary and moving targets. However, these methods 

assume monostatic operation with the array located parallel to the front wall, and exploit the 

strength and invariance of the wall return across the array under such a deployment for 

mitigating the wall return. As such, they may not perform as well under other situations. 

For multistatic imaging radar systems using ultra-wideband (UWB) pulses, an alternate 

option is to employ time gating, in lieu of the aforementioned clutter cancellation methods. The 

compact temporal support of the signal renders time gating a viable option for suppressing the 
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wall returns.  This enhances the SCR and maintains the sparsity of the scene, thereby permitting 

the application of CS techniques for simultaneous localization of stationary and moving targets 

with few observations [74].   

A.  Signal Model 

Consider the scene layout depicted in Fig. 12. Note that although the M-element transmit and 

N-element receive arrays are assumed to be parallel to the front wall for notational simplicity, 

this is not a requirement. Let rT be the pulse repetition interval. Consider a coherent processing 

interval of I  pulses per transmitter and a single point target moving slowly away from the origin 

with constant horizontal and vertical velocity components ),,( zpxp vv  as depicted in Fig. 12.  Let 

the target position be ),( ppp zx=x
 
at time .0=t  Assume that the timing interval for sequencing 

through the transmitters is short enough so that the target appears stationary during each data 

collection interval of length .rIT  This implies that the target position corresponding to the ith 

pulse is given by  

 
),()( rzpprxppp iITvziITvxi ++=x                 (52) 

The baseband target return measured by the nth receiver corresponding to the ith pulse 

emitted by the mth transmitter is given by [74]  

 
))(exp()))(()( ,, ijimTiITtsty mnpcmnprrTp

p
mni τωτσ −−−−=                 (53) 

where )(, imnpτ
 
is the propagation delay for the ith pulse to travel from the mth transmitter to the 

target at ),(ipx  and back to the nth receiver.  In the presence of P point targets, the received 

signal component corresponding to the targets will be a superposition of the individual target 

returns in (53) with .1,,1,0 −= Pp K  Interactions between the targets and multipath returns are 

ignored in this model. Note that any stationary targets behind the wall are included in this model 
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and would correspond to the motion parameter pair ).0,0(),( =zpxp vv
 
Further note that the 

slowly moving targets are assumed to remain within the same range cell over the coherent 

processing interval. 

On the other hand, as the wall is a specular reflector, the baseband wall return received at the 

nth receiver corresponding to the ith pulse emitted by the mth transmitter can be expressed as   

)()exp())()( ,, tBjmTiITtsty
wall
mnimnwcmnwrrTw

wall
mni +−−−−= τωτσ            (54)  

where mnw,τ  is the propagation delay from the mth transmitter to the wall and back to the nth 

receiver, and )(tB
wall
mni represents the wall reverberations of decaying amplitudes resulting from 

multiple reflections within the wall (see Fig. 13). The propagation delay mnw,τ  is given by [111] 

c

zxxzxx offmnwrnoffmnwtm

mnw

22
,

22
,

,

)()( +−++−
=τ                                (55) 

where 

,
2

tm rn
w mn

x x
x

+
= .                                                              (56) 

is the point of reflection on the wall corresponding to the mth transmitter and the nth receiver, as 

shown in Fig. 13. Note that, as the wall is stationary, the delay mnw,τ
 
does not vary from one 

pulse to the next. Therefore, the expression in (54) assumes the same value for .1,,1,0 −= Ii K   

    Combining (53) and (54), the total baseband signal received by the nth receiver, corresponding 

to the ith pulse with the mth transmitter active, is given by 

 ∑
−

=

+=′
1

0

)()()(
P

p

p
mni

wall
mnimni tytyty  (57) 

By gating out the wall return in the time domain, we gain access to the sparse behind-the-

wall scene of a few stationary and moving targets of interest.  Therefore, the time-gated received 
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signal contains only contributions from the P targets behind the wall as well as any residuals of 

the wall not removed or fully mitigated by gating. In this section, we assume that wall clutter is 

effectively suppressed by gating. Therefore, using (57), we obtain 

∑
−

=

=
1

0

)()(
P

p

p
mnimni tyty                                                                 (58) 

B.  Linear Model Formulation and CS reconstruction 

With the observed scene divided into  pixels in crossrange and downrange, consider 
xvN  

and 
zvN

 
discrete values of the expected horizontal and vertical velocities, respectively. 

Therefore, an image with 
 
pixels in crossrange and downrange is associated with each 

considered horizontal and vertical velocity pair, resulting in a four-dimensional target space. 

Note that the considered velocities contain the (0, 0) velocity pair to include stationary targets.  

Sampling the received signal )(tymni  at times 1
0}{ −

=
K
kkt , we obtain a 1×K vector .mniy  For the 

lth velocity pair ),,( zlxl vv  we vectorize the corresponding crossrange vs. downrange image into 

an 1×zx NN
 
scene reflectivity vector ).,( zlxl vvr The vector ),( zlxl vvr

 
is a weighted indicator 

vector defining the scene reflectivity corresponding to the lth considered velocity pair, i.e., if 

there is a target at the spatial grid point (x, z) with motion parameters ),,( zlxl vv  then the value of 

the corresponding element of ),( zlxl vvr  should be nonzero; otherwise, it is zero. 

    Using the developed signal model in (53) and (58), we obtain the linear system of equations, 

1,,1,0    ),,(),( −=Ψ=
zx vvzlxlzlxlmnimni NNlvvvv Kry                               (59) 

where the matrix ),( zlxlmni vvΨ  is of dimension .zx NNK ×  The qth column of ),( zlxlmni vvΨ  

consists of the received signal corresponding to a target at pixel qx  with motion parameters 

),,( zlxl vv  and the ith element of the qth column can be written as 

Nx × Nz

N x × Nz
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1,,1,0 )),(exp())(( )],([ ,,, −=−−−−=Ψ zxmnqcmnqrrkTqkzlxlmni NNqijimTiITtsvv Kτωτ      (60) 

where )(, imnqτ  is the two-way signal traveling time, corresponding to ),,( zlxl vv  from the mth 

transmitter to the qth spatial grid point and back to the nth receiver for the ith pulse.  

    Stacking the received signal samples corresponding to I pulses from all MN transmitting and 

receiving element pairs, we obtain the 1×MNIK measurement vector y as 

 )1(,,1,0   ),,(),( −=Ψ=
zx vvzlxlzlxl NNlvvvv Kry                                      (61) 

where  

.)],( , ),,([),( )1)(1)(1(000
T

zlxl
T

INMzlxl
T

zlxl vvvvvv −−−ΨΨ=Ψ K                     (62) 

Finally, forming the 
zx vvzx NNNNMNIK×  matrix Ψ  as 

 .)],( , ),,([ )1()1(00 −−ΨΨ=Ψ
zvxvzvxv NNzNNxzx vvvv K ,                                     (63) 

we obtain the linear matrix equation  

  ry
)

Ψ=                                                                           (64) 

with r
)

 being the concatenation of target reflectivity vectors corresponding to every possible 

considered velocity combination. 

The model described in (64) permits the scene reconstruction within the CS framework. We 

measure a MNIKJ <  dimensional vector of elements randomly chosen from .y  The reduced set 

of measurements can be expressed as 

 ry
)(

ΦΨ=                                                                       (65) 

where Φ  is a MNIKJ ×  measurement matrix. For measurement reduction simultaneously along 

the spatial, slow time, and fast time dimensions, the specific structure of the matrix Φ  is given 

by 
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where )(⋅I
 
is an identity matrix with the subscript indicating its dimensions, and , , , 111 JNM  

2 and J  denote the reduced number of transmit elements, receive elements, pulses, and fast time 

samples, respectively, with the total number of reduced measurements .2111 JJNMJ =  The 

matrix 1Φ  is an MM ×1  matrix, 2Φ  is an NN ×1  matrix, 3Φ  is a IJ ×2  matrix, and each of 

the 4Φ  matrices is a KJ ×1  matrix for determining the reduced number of transmitting 

elements, receiving elements, pulses and fast time samples, respectively. Each of the three 

matrices 321  and ,, ΦΦΦ  consists of randomly selected rows of an identity matrix. These choices 

of reduced matrix dimensions amount to selection of subsets of existing available degrees of 

freedom offered by the fully deployed imaging system.  Any other matrix structure does not 

yield to any hardware simplicity or saving in acquisition time. On the other hand, three different 

choices, discussed in Section VI.B, are available for compressive acquisition of each pulse in fast 

time.  

Given the reduced measurement vector y
(

 in (65), we can recover r
)

 by solving the following 

equation, 

 yrrr
r

()))
) ≈ΦΨ=   subject to minargˆ

1l
                                               (67) 

We note that the reconstructed vector can be rearranged into 
zx vv NN  matrices of dimensions 

 in order to depict the estimated target reflectivity for different vertical and horizontal 

velocity combinations. Note that i) Stationary targets will be localized for the (0,0) velocity pair, 

and ii) Two targets located at the same spatial location but moving with different velocities will 

be distinguished and their corresponding reflectivity and motion parameters will be estimated. 

N x × Nz
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C.  Illustrative Results 

A real data collection experiment was conducted in the Radar Imaging Laboratory, Villanova 

University. The system and signal parameters are the same as described in Section VI.C. The 

origin of the coordinate system was chosen to be at the center of the receive array. The scene 

behind the wall consisted of one stationary target and one moving target, as shown in Fig. 14. A 

metal sphere of 0.3 m diameter, placed on a 1 m high Styrofoam pedestal, was used as the 

stationary target. The pedestal was located 1.25 m behind the wall, centered at (0.49 m, 2.45 m). 

A person walked towards the front wall at a speed of 0.7 m/s approximately along a straight line 

path, which is located 0.2 m to the right of the transmitter. The back and the right side wall in the 

region behind the front wall were covered with RF absorbing material, whereas the 8 in thick 

concrete side wall on the left and the floor were uncovered.  A coherent processing interval of 15 

pulses was selected.  

The image region is chosen to be 4 m × 6 m, centered at (-0.31 m, 3 m), and divided into 41 

× 36 pixels in crossrange and downrange.  As the human moves directly towards the radar, we 

only consider varying vertical velocity from -1.4 m/s to 0 m/s, with a step size of 0.7 m/s, 

resulting in three velocity pixels.  The space-slow time-fast time response of the scene consists of 

8 × 15 × 2872 measurements. First, we reconstruct the scene without time gating the wall 

response. Only 33.3% of the 15 pulses and 13.9% of the fast-time samples are randomly selected 

for each of the 8 receive elements, resulting in 8 × 5 × 400 space-slow time-fast time measured 

data. This is equivalent to 4.6% of the total data volume. Figure 15 depicts the CS based result, 

corresponding to the three velocity bins, obtained with the number of OMP iterations set to 50. 

We observe from Figs. 15(a) and 15(b) that both the stationary sphere and the moving person 

cannot be localized. The reason behind this failure is two-fold:  1) The front wall is a strong 
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extended target and as such, most of the degrees of freedom of the reconstruction process are 

used up for the wall, and 2) The low SCR, due to the much weaker returns from the moving and 

stationary targets compared to the front wall reflections, causes the targets to be not 

reconstructed with the residual degrees of freedom of the OMP. These results confirm that the 

performance of the sparse reconstruction scheme is hindered by the presence of the front wall.  

After removal of the front wall return from the received signals through time gating, the 

space-slow time-fast time data includes 8 × 15 × 2048 measurements. For CS, we used all eight 

receivers, randomly selected 5 pulses (33.3% of 15) and chose 400 Gaussian random 

measurements (19.5% of 2048) in fast time, which amounts to using 6.5% of the total data 

volume. The number of OMP iterations was set to 4. Figures 16(a), 16(b), and 16(c) are the 

respective images corresponding to the 0 m/s, -0.7 m/s, and -1.4 m/s velocities. It is apparent that 

with the wall gated out, both the stationary and moving targets have been correctly localized 

even with the reduced set of measurements. 

VIII. CONCLUSION 

In this paper, we presented a review of important approaches for sparse behind-the-wall scene 

reconstruction using CS. These approaches address the unique challenges associated with fast 

and efficient imaging in urban operations. First, considering stepped-frequency SAR operation, 

we presented a linear matrix modeling formulation, which enabled application of sparsity based 

reconstruction of a scene of stationary targets using a significantly reduced data volume. Access 

to background scene without the targets of interest was assumed to render the scene sparse upon 

coherent subtraction. Subsequent sparse reconstruction using a much reduced data volume was 

shown to successfully detect and accurately localize the targets. 
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Second, assuming no prior access to a background scene, we examined the performance of 

joint mitigation of the wall backscattering and sparse scene reconstruction in TWRI applications. 

We focused on subspace projections approach, which is a leading method for combating wall 

clutter. Using real data collected with a stepped-frequency radar, we demonstrated that the 

subspace projection method maintains proper performance when acting on reduced data 

measurements.  

Third, a sparsity-based approach for imaging of interior building structure was presented. 

The technique made use of the prior information about building construction practices of interior 

walls to both devise an appropriate linear model and design a sparsifying dictionary based on the 

expected wall alignment relative to the radar’s scan direction. The scheme was shown to provide 

reliable determination of building layouts, while achieving substantial reduction in data volume.  

Fourth, we described a group sparse reconstruction method to exploit the rich indoor 

multipath environment for improved target detection under efficient data collection. A ray 

tracing approach was used to derive a multipath model, considering reflections not only due to 

targets interactions with interior walls, but also the multipath propagation resulting from ringing 

within the front wall.  Using stepped-frequency radar data, it was shown that this technique 

successfully reconstructed the ground truth without multipath ghosts, and also increased the SCR 

at the true target locations. 

Fifth, we detected and localized moving humans behind walls and inside enclosed structures 

using an approach that combines sparsity-driven radar imaging and change detection.  Removal 

of stationary background via CD resulted in a sparse scene of moving targets, whereby CS 

schemes could exploit full benefits of sparsity-driven imaging. An appropriate CD linear model 

was developed that allowed scene reconstruction within the CS framework. Using pulsed radar 
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operation, it was demonstrated that a sizable reduction in the data volume is provided by CS 

without degradation in system performance.   

Finally, we presented a CS based technique for joint localization of stationary and moving 

targets in TWRI applications. The front wall returns were suppressed through time gating, which 

was made possible by the short temporal support characteristic of the UWB transmit waveform. 

The SCR enhancement as a result of time gating permitted the application of CS techniques for 

scene reconstruction with few observations. We established an appropriate signal model that 

enabled formulation of linear modeling with sensing matrices for reconstruction of the 

downrange-crossrange-velocity space. Results based on real data experiments demonstrated that 

joint localization of stationary and moving targets can be achieved via sparse regularization 

using a reduced set of measurements without any degradation in system performance.  
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Figure 1.  Geometry on transmit of the equivalent two-dimensional problem. 
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(a)                                                   (b) 

  
(c)                                                         (d) 

Figure 2. Imaging results after background subtraction. (a) Backprojection image using full data 

(b) Backprojection image using 10% data volume, (c) CS reconstructed image using full data, (d) 

CS reconstructed image using 10% of the data.  

 

 
(a)                                                         (b) 

Figure 3.  CS based imaging result (a) using full data volume without background subtraction, 

(b)  using 10% data volume with the same frequency set at each antenna.  
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                                            (a)                                                              (b) 

Figure 4.  (a) Specular reflections produced by walls, (b) Indicator function. 

 

 
(a) 

 
(b) 

Figure 5.  (a) Crossrange division into blocks of lx pixels, (b) Sparsifying dictionary generation. 
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(a) 

 

(b) 

 

Figure 6.  (a) Scene geometry, (b) reconstructed image. 
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                                     (a)                                                                      (b) 

Figure 7.  (a) Multipath propagation via reflection at an interior wall, (b) Wall ringing 

propagation with wi =1 internal bounces. 

 

Figure 8. Scene Layout. 

 

(a)                                                   (b) 

Figure 9.  (a) Backprojection image with full data volume;  (b) Group sparse reconstruction with 

25% of the antenna elements and 50% of the frequencies. 
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Figure 10. Scene Layout for the target undergoing translational motion. 

 

Figure 11. Sparsity-based CD image using 5% of the data volume. 

 

Figure 12. Geometry on transmit and receive. 
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Figure 13. Wall reverberations. 

 

 

Figure 14. The configuration of the experiment. 
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(a)

 

  

(b)                                                                             (c)
 

Figure 15. Imaging result for both stationary and moving targets without time gating, (a) CS 

reconstructed image (0,0)σ , (b) CS reconstructed image (0, 0.7)σ − ,(c) CS reconstructed image 

(0, 1.4)σ − . 
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(a)  

   

(b)                                                                        (c) 

Figure 16. Imaging result for both stationary and moving targets after time gating: (a) CS 

reconstructed image (0,0)σ , (b) CS reconstructed image (0, 0.7)σ − , (c) CS reconstructed image 

(0, 1.4)σ −  
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