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ABSTRACT   

In this paper, we exploit the notion of partial sparsity for scene reconstruction associated with 

through-the-wall radar imaging of stationary targets under reduced data volume. Partial sparsity 

implies that the scene being imaged consists of a sparse part and a dense part, with the support of the 

latter assumed to be known. For the problem at hand, sparsity is represented by a few stationary 

indoor targets, whereas the high scene density is defined by exterior and interior walls.  Prior 

knowledge of wall positions and extent may be available either through building blueprints or from 

prior surveillance operations. The contributions of the exterior and interior walls are removed from 

the data through use of projection matrices, which are determined from wall- and corner-specific 

dictionaries. The projected data, with enhanced sparsity, is then processed using l1-norm 

reconstruction techniques. Numerical electromagnetic data is used to demonstrate the effectiveness 

of the proposed approach for imaging stationary indoor scenes using a reduced set of measurements.   

Keywords: Sparse reconstruction, partial sparsity, compressive sensing, through-the-wall radar. 
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1. INTRODUCTION  

The ultimate objective of achieving actionable intelligence in an efficient and reliable manner is 

faced with a host of challenges underlying the urban sensing and through-the-wall radar imaging 

(TWRI) applications [1]-[9]. First and foremost is the increasing demand on radar systems to deliver 

high-resolution images in both range and crossrange, which requires the use of wideband signals and 

large array apertures, respectively. Second, the backscatter from the first wall, which is the exterior 

wall of the building being imaged, is much stronger than the returns from the interior of the building. 

This is because the signal undergoes attenuation in the wall materials and the more walls the signal 

penetrates to reach the indoor targets, the weaker are the returns. Therefore, the clutter caused by the 

wall backscatter can significantly contaminate the radar data and hinder the main intent of providing 

enhanced system capabilities for imaging of building interiors and detection and localization of 

stationary indoor targets.  

Recently, compressive sensing (CS) has been used for efficient data acquisition in radar systems 

in general [10]-[14], and in urban radar systems in particular [15]-[19]. For urban radar systems, 

removal of clutter and stationary targets via change detection or exploitation of sparsity in the 

Doppler domain readily enable the application of CS techniques for moving target detection inside 

buildings [20]-[23]. However, these means are not available for detection and localization of 

stationary targets of interest, thereby requiring significant mitigation of wall reflections.  

Several approaches have been proposed for dealing with front wall returns under full data 

volume without the need for reference or background data [8], [24]-[26]. In [8], the wall parameters, 

such as thickness and dielectric constant, are estimated from first wave arrivals, and then used to 

model and subtract the front wall contributions from the received data. The approach in [24] for wall 

clutter mitigation is based on spatial filtering. It utilizes the strong similarity between wall 
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electromagnetic (EM) responses, as viewed by different antennas along the entire physical or 

synthesized array aperture. A spatial filter is applied to remove the dc component corresponding to 

the constant-type radar return associated with the front wall. The subspace decomposition method, 

presented in [25], [26], utilizes not only the approximately identical wall scattering characteristics 

across the array elements, but also the higher strength of the wall reflections compared to that of 

target reflections. When singular value decomposition (SVD) is applied to the measured data matrix, 

the wall subspace can be captured by the singular vectors associated with the dominant singular 

values. As a result, the wall contributions can be removed by projecting the data measurement vector 

at each antenna on the wall orthogonal subspace. It is noted that as the round-trip signal traveling 

times from the antennas to each interior wall, which is parallel to the front wall, are constant across 

the array aperture, both spatial filtering and the subspace decomposition methods will also mitigate 

returns from interior parallel walls as long as they are not shadowed by other contents of the 

building [27].  

Both spatial filtering and subspace projection approaches have been shown to be equally 

effective for synthetic aperture radar (SAR) imaging under reduced data volume, provided that the 

same reduced set of frequencies or time samples are used at each available antenna position [28], 

[29]. Requiring the same frequency observations or time samples across all antennas is very 

restrictive and may not always be feasible. For example, some individual frequencies or frequency 

subbands may be unavailable due to competing wireless services or intentional interferences. 

Further, antenna positions may signify  radar units operating independently, each with a separate 

frequency band to avoid cross-interference.  In this paper, we propose an alternate scheme for 

imaging of stationary indoor scenes which overcomes this limitation of wall clutter mitigation 

techniques under reduced data volume by exploiting prior knowledge of the room layout. This 
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information may be available either through building blueprints or from prior surveillance operations 

specifically dedicated to determining the building layout. We consider the scene being imaged to be 

partially sparse. That is, the scene consists of two parts, one of which is sparse and contains the 

stationary indoor targets of interest, while the other corresponding to the exterior and interior walls 

is dense with known support [30], [31]. We focus on stepped-frequency SAR operation and assume 

that few frequency observations are available, which could be the same or different from one 

antenna position to another, constituting the set of reduced spatial measurements. We employ 

projection matrices that are determined from wall- and corner-specific scattering responses, to 

remove the exterior and interior wall contributions from the measurements. In so doing, we enable 

the application of conventional sparse reconstruction schemes to obtain an image of the sparse part 

of the scene containing the stationary indoor targets.   We demonstrate the effectiveness of the 

partial sparsity based approach for reconstruction of stationary through-the-wall scenes using 

numerical electromagnetic data of a single story building for both cases of having the same reduced 

set of frequencies at each of the available antenna locations and also when different frequency 

measurements are employed at different antenna locations.  

It is noted that, as an alternative to the proposed approach, the wall and corner responses can be 

modeled and then subtracted from the received data. However, this approach has two issues. First, it 

is very sensitive to phase errors. Second, it may not always work since some corners and parts of 

interior walls may be shadowed by objects in the interior of the building.  Additionally, it is 

important to draw a distinction between the proposed approach and the subspace projection 

approach for wall removal [25], [26]. Although both approaches involve data projections, they 

exploit fundamentally different characteristics of the data measurements to achieve the desired 

objective. The subspace projection approach does not require knowledge of wall positions and 
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extent. However, it assumes nominal geometry of the walls. In this respect, it relies on a specific 

radar configuration, whose defining characteristics are the constant distance of each antenna from 

the walls and normal incidence illuminations. This ensures approximately constant wall 

contributions in the data received at all antennas. The partial sparsity approach, on the other hand, 

relies on accurate knowledge of the building geometry to create wall and corner specific 

dictionaries, which are subsequently used for mitigating the contributions of exterior and interior 

walls.  It does not, however, demand the invariance of wall returns across the partial or entire radar 

aperture.  The impact of these fundamental differences on the performance of the two approaches is 

highlighted in Section 5.  

The remainder of this paper is organized as follows. Section 2 presents the signal model under 

the assumption of known support of the exterior and interior walls. The wall contribution removal 

technique and scene reconstruction are discussed in Section 3. Section 4 evaluates the performance 

of the proposed partially sparse through-the-wall scene reconstruction approach using numerical EM 

data of a single story building. Performance comparison with the subspace projection approach is 

also provided. Conclusions are drawn in Section 5. 

2. SIGNAL MODEL 

In this section, we develop the forward scattering model for through-the-wall radar imaging. The 

model is based on physical optics and any associated nonlinearities are ignored [32].  

Consider a monostatic SAR with N antenna positions located along the x-axis parallel to a 

homogenous front wall. The transmit waveform is assumed to be a stepped-frequency signal of M 

frequencies, which are equispaced over the desired bandwidth ���� − ��, 

 �� = �� + 
∆�,				
 = 0,1,⋯ , � − 1 (1) 
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where �� is the lowest frequency in the desired frequency band and ∆ω is the frequency step size. 

The scene behind the front wall is assumed to be composed of P point targets, L-1 interior walls, 

which are parallel to the front wall and to the radar scan direction, and K corners corresponding to 

the junctions of two walls perpendicular to each other. It is noted that, due to the specular nature of 

the wall reflections, a SAR system located parallel to the front wall will only be able to receive 

backscattered signals from interior walls, which are parallel to the front wall. The contributions of 

walls perpendicular to the front wall will be captured primarily through the backscattered signals 

from the corners [33], [34].  

The component of the received signal corresponding to the mth frequency at the nth antenna 

position, with phase center at xxxx�� = (���, 0), due to the P point targets is given by [35], [36]   

  (2) 

where 
 
is the complex amplitude corresponding to the pth target return and is the two-way 

traveling time between the nth antenna and the pth target. The reflections from the L walls measured  

at the nth antenna location corresponding to the mth frequency can be expressed as [24] 

  (3) 

where 
 
is the complex amplitude associated with the lth wall and  is the two-way traveling 

time of the signal from the nth antenna to the lth wall. Note that since the scan direction is parallel to 

the walls, the delay  does not depend on the variable n and is a function only of the downrange 

distance between the lth wall and the antenna baseline. Finally, the reflections from the K corners 

measured at the nth antenna location corresponding to the mth frequency can be expressed as [33], 

[37] 

ztgt (m, n) = σ p exp(− jωmτ p,n )
p=0

P−1

∑

σ p τ p,n

zwall(m, n) = σ w,l exp(− jωmτ w,l )
l=0

L−1

∑

σ w,l τ w,l

τ w,l
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  (4) 

where  is the complex amplitude,  is the length, and  is the orientation angle of the kth 

corner, is the two-way propagation delay between the nth antenna and the kth corner,  is the 

aspect angle associated with the kth corner and the nth antenna, and is an indicator function 

which assumes a unit value only when the nth antenna illuminates the concave side of the kth corner. 

We note that each of the complex amplitudes , , and 
 
in (2)-(4) contain contributions from 

free-space path loss, attenuation due to propagation through the wall(s), and the reflectivity of the 

corresponding scatterer. The nth received signal corresponding to the mth frequency is, thus, given 

by 

  (5) 

Assume that the scene being imaged is divided into a finite number of grid-points, say Q, in 

crossrange and downrange. Let zzzz� represent the received signal vector corresponding to the M 

frequencies and the nth antenna location, and ssss be the concatenated � × 1 scene reflectivity vector 

corresponding to the spatial sampling grid. Under the assumption that the building layout is known a 

priori, ssss can be expressed as s=s=s=s=[���	 ���]�, where �� ∈ ℂ#$
 is the dense part whose support is known 

and �� ∈ ℂ#%, �� = � − ��,		is the sparse part. Note that �� corresponds to the walls that are parallel 

to the antenna baseline. Further, since the wall junctions lie along the parallel walls, the corner 

locations would correspond to the support of a subset of ��, say �&� ∈ ℂ',	( < ��. Then, using (2)-

(5), we obtain the matrix-vector form 

  zzzz� = *��� + +��&� + ,��� (6) 

zcorner (m,n) = Γk,nσ ksinc (ωmLk / c)sin(θk,n −θk )( )exp(− jωmτ k,n )
k=0

K−1

∑

σ k Lk
θk

τ k,n θk,n

Γk,n

pσ σ w,l σ k

),(),(),(),( tgtcornerwall nmznmznmznmz ++=
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where *�,	+�, and	,� are the dictionary matrices corresponding to the wall, corner reflector, and 

point target, respectively. The matrix ,� is of dimension � × �� with its (m, -�)th element given by  

 [CCCC�]�,-2 = exp2−3��4-2 ,56 (7) 

where 	47%,�  is  the two-way  traveling time between the  nth antenna and the 	-�th grid-point  of  the 

sparse part. The wall dictionary *� is an � × �� matrix, whose (m,	-�)th element takes the form 

[38] 

 [AAAA�]�,7$ = exp2−3��297$/;6ℑ7$,�. (8) 

In (8), 97$ represents the downrange coordinate of the -�th grid-point in the dense part, and ℑ7$,� is 

an indicator function, which assumes a unit value only when the -�th grid-point lies in front of the 

nth antenna, as illustrated in Fig. 1. That is, if �7$ 	represents the crossrange coordinate of the -�th 

dense grid-point and >� represents the crossrange sampling step, then ℑ7$,� = 1 provided that 

�7$ − ?@
� ≤ ��� ≤ �7$ + ?@

� .  The corner dictionary +� is an � × ( matrix whose (m, r)th element is 

given by 

 [BBBB�]�,C = exp2−3��4C,�6ΓC,�sinc HIJKL&M
N O sin2PC,� − P̅C6R. (9) 

Equation (6) considers the contribution of only one antenna location. Stacking the measurement 

vectors corresponding to all N antennas to form a tall vector  

 zzzz = [[[[S��			S�� 			⋯			ST��� ]]]]� , (10)	
we obtain the linear system of equations 

 zzzz = *�� + +�&&&&� + ,�� (11) 

where  

 * = [*��			*�� 			⋯			*T��� ]�,			+ = [+��			+�� 			⋯			+T��� ]�,			, = [,��			,�� 			⋯			,T��� ]� (12) 
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The vector zzzz contains the full dataset corresponding to the N antenna locations and the M 

frequencies. For the case of reduced data volume, consider U,	which is a J (<< MN) dimensional 

vector consisting of elements randomly chosen from zzzz as follows, 

 ξξξξ = ΦΦΦΦzzzz = ΦΦΦΦ*�� + ΦΦΦΦ+�&&&&� + ΦΦΦΦ,�� (13) 

In (13), Φ is a J	 × �X measurement matrix of the form,  

 Φ = kron(Y,				ZJ[) ∙ diag`̀̀̀a�,				a�, … ,				aT��cccc,												J = J�J� (14) 

where ‘kron’ denotes the Kronecker product, ZJ[ 	is a J� ×	J� identity matrix, Y is a J� × N 

measurement matrix constructed by randomly selecting J� rows of an	N	 × N identity matrix, and 

a�, 5 = 0,1, … ,X − 1, is a J� × 	M measurement matrix constructed by randomly selecting J� rows 

of an M	 × M identity matrix. We note that Y determines the reduced antenna locations, whereas a� 

determines the reduced set of frequencies corresponding to the nth antenna location.  

3. WALL CONTRIBUTIONS REMOVAL AND SCENE RECONSTRUCTION 

Given the reduced measurement vector U	and knowledge of the support of the walls and corners, 

the goal is to reconstruct the sparse part of the image where the targets of interest are located. 

Towards this goal, we first need to remove the contributions of the dense part of the scene from U. 

Let	fg be the matrix of the orthogonal projection from ℂ#	onto the orthogonal complement of the 

range space of the matrix ΦΦΦΦ*. If ΦΦΦΦ* is a full rank matrix, then fg can be expressed as 

 fg = ZJ − (ΦΦΦΦ*)(ΦΦΦΦ*)h (15) 

where ZJ		is a J × 	J identity matrix, and (ΦΦΦΦ*)h	denotes the pseudoinverse of (ΦΦΦΦ*). On the other 

hand, if ΦΦΦΦ* has a reduced rank, then we have to resort to the SVD of ΦΦΦΦ* to obtain the matrix fg as 

 fg = igigj (16) 
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where ig is the matrix consisting of the left singular vectors corresponding to the zero singular 

values and the superscript ‘H’ denotes the Hermitian operation. Applying the projection matrix fg 

to the observation vector U, we obtain  

 Ug ≡ fgξξξξ = fg((((ΦΦΦΦ*�� + ΦΦΦΦ+�&� + ΦΦΦΦ,��) = fgΦΦΦΦ+�&� + fgΦΦΦΦ,�� (17) 

Next, consider the projection matrix fl given by 

 fl = mZJ − (fgΦΦΦΦ+)(fgΦΦΦΦ+)h																								 if	fgΦΦΦΦ+	has	a	full	rank
ilil

j otherwise
 (18) 

where il is the matrix consisting of the left singular vectors corresponding to the zero singular 

values of the matrix fgΦΦΦΦ+. Application of fl to the measurement vector Ug	leads to 

 Ulg ≡ flUg = fl(fgΦΦΦΦ+�&� + fgΦΦΦΦ,��) = flfgΦΦΦΦ,�� (19) 

Thus, after the sequential application of the two projection matrices, the measurement vector 

Ulg	contains contributions from only the sparse image part, ��, which can then be recovered by 

solving the problem  

 �w� = arg	min�%‖��‖� 				subject to Ulg ≈ flfgΦΦΦΦ,�� (20) 

The problem in (20) belongs to the classical setting of CS and, thus, can be solved using convex 

relaxation, greedy pursuit, or combinatorial algorithms [39]-[43]. In this work, we choose orthogonal 

matching pursuit (OMP), which is an iterative greedy algorithm [44].   

It is noted that the dimensionality of the orthogonal complements of the range spaces of the 

matrices ΦΦΦΦ*  and ΦΦΦΦ+		are at least J − �� and J − (,	respectively. Further, if access to full data 

volume is available, the proposed wall removal procedure can also be applied to the full data vector 

zzzz with appropriate projection matrices determined from the dictionary matrices * and + instead of 

ΦΦΦΦ* and ΦΦΦΦ+, respectively. The wall-free data can then be processed using conventional image 

formation techniques [45].  
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4. SIMULATION RESULTS 

In this section, we present scene reconstruction results for the partial sparsity technique using 

numerical EM data and provide performance comparison with the subspace projection approach for 

both full and reduced data volumes. For the reduced data volume, we consider both cases of having 

different frequency measurements at different available antenna locations and also when the same 

reduced set of frequencies are employed at each of the available antenna locations. Note that for the 

subspace projection based wall-mitigation CS approach proposed in [28], the former casts a more 

challenging problem than the latter, as it is not amenable to wall removal using direct 

implementation of the subspace projection technique.  Instead, the range profile at each employed 

antenna location first needs to be reconstructed through {�	norm minimization using the reduced 

frequency set [28]. Then, the Fourier transform of each reconstructed range profile is taken to 

recover the full frequency data measurements at each antenna location. Direct application of the 

subspace projection technique can then proceed, followed by the scene reconstruction.  

4.1 Electromagnetic Modeling 

The simulation is based on Xpatch, developed by SAIC, which is a computational EM code 

implementing an approximate ray tracing/physical optics computational approach.  We created the 

computer model of a single story building, with overall dimensions of 7 m × 10 m × 2.2 m, 

containing four humans (labeled 1 through 4) and several furniture items, as shown in Fig. 2. The 

origin of the coordinate system was chosen to be in the center of the building, with the x- axis and 

the y-axis oriented as shown in Fig. 2(b). The exterior walls were made of 0.2 m thick bricks and had 

glass windows and a wooden door. The interior walls were made of 5 cm thick sheetrock and had a 

wooden door. The ceiling/roof is flat, made of a 7.5 cm thick concrete slab. The entire building is 

placed on top of a dielectric ground plane. The furniture items, namely, a bed, a couch, a bookshelf, 
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a dresser, and a table with four chairs, were made of wood, while the mattress and cushions were 

made of generic foam/fabric material. Humans 1 through 4 were positioned at various locations in 

the interior of the building with 45°, 0°, –20°, and 10° azimuthal orientation angles. Note that an 

orientation angle of 0° corresponds to the human facing along the positive x direction and the 

positive angles correspond to a counterclockwise rotation in the horizontal plane. Human 3, 

positioned inside the interior room, was carrying an AK-47 rifle. The human model was made of a 

uniform dielectric material with properties close to those of skin and is described in [46]. The human 

body radar cross section (RCS) depends on the aspect angle, but is generally bounded between -10 

and 0 dBsm. Interestingly, the average human body RCS is fairly constant over the frequency range 

considered in this paper. More detailed results on the human body radar signature can be found in 

[46]. The AK-47 model is made of metal and wood and is described in [47], [48]. The dielectric 

properties of the various materials employed are listed in Table 1. 

A 6m long synthetic aperture line array, with an inter-element spacing of 2.54cm and located 

parallel to the front of the building at a standoff distance of 4 m, was used for data collection. 

Monostatic operation was assumed. The antenna had a 3 dB beamwidth of 60° in both elevation and 

azimuth and was positioned 0.5m above the ground plane. The antenna boresight was aimed 

perpendicular to the exterior wall. A stepped-frequency signal covering the 0.7 to 2 GHz frequency 

band with a step size of 8.79 MHz was employed. Thus, at each of the 239 scan positions, the radar 

collected 148 frequency measurements over the 1.3 GHz bandwidth.  

4.2 Image Reconstruction under Full Data Volume  

The region to be imaged was chosen to be 9 m x 12 m centered at the origin and divided into 121 

x 161 pixels, respectively.  Figure 3(a) shows the image obtained with backprojection using the full 

raw dataset. In this figure and all subsequent figures in this paper, we plot the image intensity with 
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the maximum intensity value in each image normalized to 0dB. Hanning window was applied to the 

data along the frequency dimension in order to reduce the range sidelobes in the image.  The humans 

in the image are indicated by red circles. We can clearly see the front wall, some of the corners, and 

humans 1 and 2. Human 3 in the interior room is barely visible due to the additional EM loss as the 

transmitted signal has to penetrate through both the exterior and interior walls.  Likewise, it is a 

challenge to detect human 4, who is the farthest away from the front wall. Fig. 3(b) shows the 

backprojected image after masking out the dense regions with known support. Although all the 

targets are visible in the masked image, the image is cluttered due to the presence of the wall and 

corner sidelobes. 

Next, we reconstructed the scene using the subspace decomposition based wall mitigation 

approach. The first two dominant singular vectors of the frequency vs. antenna raw data matrix were 

used to reconstruct the wall subspace. The wall subspace dimension was selected using the method 

reported in [49]. Finally, backprojection was performed on the wall clutter mitigated data and the 

corresponding image is shown in Fig. 4(a). We observe that although the stationary targets are more 

visible and the front and interior wall reflections are successfully removed, the corners indicating the 

presence of doors and windows are still present. So is most of the back wall due to shadowing 

effects. The approach also removed the reflections from the edge of the couch and only the couch 

corners survive.  More importantly, the presence of discontinuities in the front wall (windows and 

door) causes the subspace decomposition based approach to introduce artifacts in the image, 

indicated by the red rectangles. Such artifacts in the interior of the building are more visible in Fig. 

4(b), which shows the image after masking out the dense regions with known support. These 

artifacts are attributed to the fact that the subspace projection scheme assumes the wall response to 

be the same from one antenna to the other, which is violated by the presence of windows and doors. 



 

 
 

 

 14

Finally, Fig. 5 presents the backprojected image obtained using the proposed approach. The 

dense part of the scene, corresponding to the building layout (exterior and interior walls parallel to 

the array and corners), consisted of 7196 pixels, while the sparse part of the scene consisted of the 

remaining 12285 pixels. Compared to Figs. 3(b) and 4(b), the image in Fig. 5 is the least cluttered 

since the wall sidelobes, in particular near the back wall, are absent. All of the humans and the 

furniture items are clearly visible in the image. We, therefore, conclude that the proposed approach 

provides superior performance compared to the subspace decomposition based wall mitigation 

approach under the full data volume.  

In addition to the visual inspections, we also assess the performance of the various methods in 

terms of the target-to-clutter ratio (TCR), which is defined as the ratio between the average pixel 

power 	|�	in the target region to the average pixel power |N	in the clutter region of the reconstructed 

image �w� 

 TCR = 10log�� I}~
}�O,				|� = �

T~ ∑ �[�w�]7%��7%∈'~ ,						|N = �
T� ∑ �[�w�]7%��7%∈'� ,   (21) 

where (� is the target region, (N is the clutter area, X� is the number of pixels in the target area, and 

XN is the number of pixels in the clutter region. The target area is composed of regions containing 

the four humans, and the remaining pixels of �w� constitute the clutter region. Note that we consider 

furniture reflections as unwanted returns, and accordingly, they are treated as clutter. Table 2 shows 

the TCR values for the reconstructed images of Fig. 3(b), Fig. 4(b), and Fig. 5. As expected, the 

TCR is improved using the proposed scheme over the subspace projection based wall clutter 

mitigation scheme.  
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4.3 Image Reconstruction under Different Sets of Reduced Frequencies at Each Available 

Antenna Location 

Conventional image formation techniques, such as backprojection, compromise the image 

quality when a reduced number of measurements is considered, thereby impeding the detection of 

targets behind the wall in the image domain. This is illustrated in Fig. 6, wherein we used 118 

randomly selected frequencies (79.7% percent of 148) and 79 randomly chosen antenna locations 

(30% of 239)) for backprojection, which collectively represent 26% of the total data volume. The 

corresponding space-frequency sampling pattern is shown in Fig. 7, where the vertical axis 

represents the antenna location, and the horizontal axis represents the frequency. The filled boxes 

represent the data samples constituting the reduced set of measurements. 

Next, we reconstructed the scene using the partial sparsity approach with 26% data volume. The 

number of OMP iterations, usually associated with the sparsity level of the scene, was set to 10. In 

this case, and for all subsequent sparse imaging results, each imaged pixel is the result of averaging 

200 runs, with a different random selection for each run. The partial sparsity based reconstruction of 

the sparse part of the scene is shown in Fig. 8(a). We observe from Fig. 8(a) that the partial sparsity 

based scheme was able to detect and localize humans 1 through 3 successfully, while it missed 

human 4. In addition, some clutter (arising from the left chair and table) and background noise is 

also visible in the reconstructed image.  

For comparison, we also performed scene reconstruction using the subspace projection based 

wall mitigation CS approach of [28] with 26% data volume. Full frequency data measurements were 

first recovered from the {�	norm reconstructed range profiles at each considered antenna location. 

The number of OMP iterations was set to 100 for each range profile reconstruction. This is because 

the presence of the wall return and clutter renders the range profile quite dense. Subspace projection 
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approach was then applied wherein the first two dominant singular vectors of the 148 x 79 data 

matrix were used to reconstruct the wall subspace. Finally, standard {�	norm image reconstruction 

was performed on the wall clutter mitigated full frequency recovered data to form an image of the 

sparse part of the scene, shown in Fig. 8(b). Similar to the partial sparsity approach, the number of 

OMP iterations in this case was chosen to be 10. We observe from Fig. 5(b) that human 1 was 

detected, human 2 was barely detected, while humans 3 and 4 were both missing from the 

reconstruction. Moreover, significantly more clutter and noise was reconstructed compared to Fig. 

8(a).  We, therefore, conclude that the partial sparsity based approach compared to the subspace 

projection based wall mitigation CS approach provides superior performance for the same reduced 

data volume when different sets of frequencies are employed at the available antennas. This is also 

confirmed by the corresponding TCR values provided in Table 3(first two rows). 

4.4 Image Reconstruction under Same Set of Reduced Frequencies at Each Available Antenna 

Location 

We now proceed with image reconstruction when the same reduced set of frequencies is 

employed at each of the available antenna locations. The corresponding space-frequency sampling 

pattern is shown in Fig. 9. We use the same set of 118 randomly selected frequencies (79.7% percent 

of 148) at each of the 79 randomly chosen antenna locations (30% of 239)). Figure 10(a) presents 

the result of the partial sparsity based approach with the number of OMP iterations set to 10. We 

observe from Fig. 10(a) that humans 1 through 3 were successfully localized, while human 4 was 

missed. In addition, some clutter arising from the furniture and noise were also reconstructed.  

We next applied the subspace projection based wall mitigation approach directly to the reduced 

dimension data matrix, 118 × 79 instead of 148 × 239 [28]. The wall suppressed data was then used 

to obtain the {�	norm reconstructed image of the sparse part of the scene, shown in Fig. 10(b), 



 

 
 

 

 17

obtained using OMP with 10 iterations. We observe that the subspace projection scheme was able to 

detect and localize humans 1, 2, and 4 successfully, while human 3 was barely detected. Residual 

wall clutter and some of the furniture returns are also visible in the reconstructed image. We, 

therefore, conclude that the partial sparsity and the subspace decomposition based wall mitigation 

CS approaches provide comparable performance for the same reduced data volume when the same 

set of frequencies is employed at the available antennas. This is validated by Table 4 which shows 

that the two schemes have comparable TCRs. 

4.5 A Note on the Number of OMP Iterations 

OMP, like other greedy iterative algorithms, requires the specification of the scene sparsity for 

exact reconstruction [44]. In most practical situations, including through-the-wall imaging, this 

information is not available a priori. Therefore, the stopping criterion based on the fixed number of 

iterations, which is tied to the scene sparsity, is heuristic. Figures 11(a) and 11(b) show the 

reconstruction result for the scene in Fig. 2 using 26% of the data volume with the number of OMP 

iterations chosen to be 25 and 45, respectively. The space-frequency sampling pattern of Fig. 7 was 

employed. In both cases, humans 1 through 3 are clearly visible. However, a higher amount of 

clutter and background noise is reconstructed with increasing number of iterations. The 

corresponding TCR values are provided in Table 3 (rows 3 and 4). 

Use of cross validation has been proposed to prevent early/late termination of greedy 

reconstruction algorithms [50]. Cross validation is a statistical technique that separates a data set into 

a training/estimation set and a test/cross validation set. The test set is used to prevent underfitting/ 

overfitting on the training set. The cross-validation based OMP reconstruction result using 26% of 

the data volume is depicted in Fig. 12, with one-fifth of the measurements used for cross validation. 

We observe that the cross validation based approach fails to solve the problem and only humans 1 
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and 2 are visible in the reconstructed image. This is because the signal strength from humans 3 and 4 

is either comparable or weaker than those from sources of clutter, and the cross validation based 

approach regards humans 3 and 4 as part of the background noise level [51]. Although only two of 

the four humans are detected, the corresponding TCR value is quite high, as shown in Table 3 (last 

row). This is because very little clutter is reconstructed. Various adaptive approaches have recently 

been proposed to counter problem of low signal-to-noise-and-clutter ratio [51]-[52]. The offering of 

these schemes to the problem at hand remains to be explored. 

5. CONCLUSION 

In this paper, we applied partial sparsity to scene reconstruction associated with through-the-wall 

radar imaging of stationary targets. Partially sparse recovery deals with the case when it is known a 

priori that part of the scene being imaged is dense while the rest is sparse. For the underlying 

problem, the dense part of the scene corresponds to the building layout and the support of the 

corresponding part of the image is assumed to be known beforehand.  This knowledge may be 

available either through building blueprints or from prior surveillance operations. Using numerical 

EM data of a single-story building, we demonstrated the effectiveness of the partially sparse 

reconstruction in detecting and locating stationary targets in through-the-wall scenes while achieving 

a sizable reduction in the data volume. 

LIST OF ABBREVIATIONS 

TWRI Through-the-Wall Radar Imaging 

CS Compressive Sensing 

EM Electromagnetic 
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SVD Singular Value Decomposition 

SAR Synthetic Aperture Radar 

OMP Orthogonal Matching Pursuit 

RCS Radar Cross Section 

TCR Target-to-Clutter Ratio 
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Table 1. Complex dielectric constant for materials used in the simulation code. 

Material ε' ε" 

Brick  3.8  0.24 

Concrete 6.8 1.2 

Glass  6.4 0 

Wood  2.5 0.05 

Sheetrock 2.0 0 

Foam Cushion and Fabric 1.4 0 

Ground 10 0.6 

Human 50 12 

 

Table 2. TCR - Backprojection under full data volume. 

Method Fig. No. TCR (dB) 

Raw data 3(b)  -4.05 

Subspace projection 4(b) -3.97 

Proposed    5 -1.45 

 

Table 3. TCR - Sparse reconstruction when different sets of reduced frequencies are used from 

different antenna locations. 

Method Fig. No. TCR (dB) 

Subspace projection 8(a) 2.75 

Proposed (Sparsity=10)   8(b) 14.96 

Proposed (Sparsity=25)   11(a) 10.12 

Proposed (Sparsity=45)   11(b) 6.86 

Proposed with Cross-

Validation   

12 24.78 
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Table 4. TCR - Sparse reconstruction when same set of reduced frequencies are used from the 

reduced set of antenna locations. 

Method Fig. No. TCR (dB) 

Subspace projection 10(a) 12.25 

Proposed  10(b) 13.32 
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LIST OF FIGURES 

Figure 1.  Illustration of the indicator function for the wall returns, which depicts that the 

indicator function will assume unit values only for the gray pixels when the 

antenna is at the position shown.   

Figure 2.  Scene Layout. (a) 3-D view, (b) Top-down view.   

Figure 3.  Backprojection results using raw data under the full data volume, (a) Full image,            

(b) Image with the support region of exterior and interior walls masked out.  

Figure 4.  Backprojection results after application of the subspace projection technique 

under the full data volume. (a) Full image, (b) Image with the support region of 

exterior and interior walls masked out.  

Figure 5.  Backprojection results using the proposed technique under the full data volume. 

Figure 6.  Backprojection results using 26% of the raw data. 

Figure 7.  An illustration of the random subsampling pattern employed for data reduction. 

Figure 8.  Scene reconstruction using (a) Partial sparsity based approach and (b) Subspace 

projection wall mitigation based CS approach. 

Figure 9.  An illustration of the random subsampling pattern employed for data reduction. 

Figure 10. Scene reconstruction using (a) Partial sparsity based approach and (b) Subspace 

projection wall mitigation based CS approach. 

Figure 11. Scene reconstruction using partial sparsity based approach with (a) 25 and (b) 45 

OMP iterations. 

Figure 12. Partially sparse scene reconstruction using cross-validation based OMP. 
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