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ABSTRACT  

Dual-frequency radars offer the benefit of reduced complexity, fast computation time, and real-time target tracking in 

through-the-wall and urban sensing applications. Compared to single-frequency (Doppler) radar, the use of an additional 

frequency increases the maximum unambiguous range of dual-frequency radars to acceptable values for indoor target 

range estimation. Conventional dual-frequency technique uses phase comparison of the transmitted and received 

continuous-wave signals to provide an estimate of the target range. The case of multiple moving targets is handled by 

separating the different Doppler signatures prior to phase estimation. However, the dual-frequency approach for range 

estimation can be compromised due to the presence of noise and multipath. In this paper, we investigate a sparsity-based 

ranging approach as an alternative to the phase difference based technique for dual-frequency radar measurements. 

Supporting results based on computer simulations are provided that illustrate the advantages of the sparsity-based 

ranging technique over the conventional method. 
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1. INTRODUCTION 

Detection and localization of moving targets are highly desirable in through-the-wall radar sensing applications, such as 

surveillance and reconnaissance, survivor search in natural disasters, and hostage rescue missions.
1-5

 There are several 

levels of moving target information that could be provided to the radar operator. A zero-dimensional system only 

provides motion detection capability, while a one-dimensional (1-D) system can provide range-to-motion information. 

On the other hand, two-dimensional (2-D) and three-dimensional (3-D) systems can localize moving targets in both 

range and azimuth, with the 3-D system also adding the target elevation information. However, the higher offerings of 

the 2-D and 3-D systems are obtained at the expense of increased cost, size, weight, and complexity.
6
 

In this paper, we consider a 1-D system for localizing moving targets, since a 1-D system provides a good compromise 

between the level of situational awareness and cost versus size, weight, and complexity. More specifically, we are 

interested in a low cost, low complexity 1-D system for range-to-motion estimation. Instead of wideband pulsed or 

stepped-frequency radar systems,
7-9

 we employ dual-frequency radars, which estimate the target range by phase 

comparison of the radar returns at two carrier frequencies.
10,11

  The maximum unambiguous range for the dual-frequency 

approach depends on the frequency difference between the two carrier signals, and, thus, the two frequencies can be 

chosen to satisfy any desired range ambiguity, e.g., the spatial extent of the urban structure being interrogated. The 

system requirements of low cost and reduced complexity for through-the-wall operations are met by the dual-frequency 

radar systems.
12

 

A shortcoming of the dual-frequency approach is its inability to estimate the ranges of multiple moving targets, as the 

phase terms induced by different targets cannot be separated in the time domain. Doppler filtering
5
 and time-frequency 

signal representations
13

 have been proposed for separating the different Doppler signatures prior to phase estimation in 

order to handle multiple moving targets. Note that these preprocessing steps are able to overcome the inherent drawback 

of the dual-frequency approach provided that the multiple target returns have distinct Doppler signatures.  

In this paper, we investigate the offerings of sparsity-based range-to-motion estimation, which is used in lieu of the 

conventional phase comparison based approach. We consider a sparse scene of either one or two targets moving behind 

walls. We present the dual-frequency  based  linear modeling formulation with  sensing matrices so as  to perform sparse 
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reconstruction of the range-velocity target space. We show that the sparsity based technique suffers from the same 

limitations as the Doppler preprocessing based dual-frequency approach. However, unlike the conventional approach, it 

offers the means for simultaneous range-to-motion estimation of multiple moving targets with distinct Doppler 

signatures. Moreover, we show that the sparse reconstruction based approach provides a higher estimation accuracy 

compared to the conventional scheme when some of the time samples of the baseband returns at the two frequencies are 

unavailable due to corruption by noise or interference. 

The remainder of the paper is organized as follows. The conventional dual-frequency technique is presented in Section 2. 

Section 3 describes the dual-frequency based linear model relating the measurements and the unknown target space, and 

the sparsity-based reconstruction approach. Supporting simulation results are provided in Section 4, followed by 

concluding remarks in Section 5.  

 

2. DOPPLER PREPROCESSING BASED DUAL-FREQUENCY APPROACH  

Consider a dual-frequency Doppler radar employing two known carrier frequencies, 1f  and 2f , and a scene of K moving 

targets. The kth target is assumed to be undergoing uniform motion with a constant velocity ,kv  with its corresponding 

range expressed as 

  KktvRtR kkkk ,,2,1     ,)cos()( 0 K=+= θ  (1) 

Here, kR0 is the initial range to the kth target at time 0=t and kθ  is the aspect angle of the kth target with respect to the 

radar line-of-sight. Without loss of generality, kθ  is assumed to be zero for all .k   The baseband radar returns 

corresponding to the K moving targets at each frequency can be expressed as, 
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where c is the speed of light and kρ is the amplitude of the kth target return, which is taken to be identical for the two 

frequencies since the difference in the carrier frequencies is assumed small. The Doppler frequency shifts are 

differentials of the corresponding phases and are given by,  
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Then, (2) can be rewritten as  
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Taking the Fourier transform of ),(tsi we obtain 
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where )(⋅δ is the Dirac delta function. Thus, the Doppler spectrum corresponding to the ith frequency exhibits peaks at 

the Doppler shifts associated with the K targets. The associated phases in (5) corresponding to the two operational 

frequencies can be extracted for each target separately in the Doppler domain as 
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Accordingly, the initial range of each target can be obtained by phase comparison as   
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whereas the target velocities can be directly obtained from the Doppler shifts. Note that this scheme works as long as the 

K targets are moving with distinct velocities.   

                             

3. SPARSITY-BASED RANGE AND VELOCITY ESTIMATION  

3.1 Linear Signal Model and Sparse Reconstruction 

We sample the baseband returns )(tsi  at times 1
0}{ −

=
N
nnt  and append the N time samples at each of the two carrier 

frequencies, 1f  and 2f , to form a tall measurement vector as  
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Assume that the target space is divided into LM × grid-points in range and velocity. We form the concatenated 

1×ML weighted target indicator vector r corresponding to the range-velocity sampling grid, i.e., if there is a target 

present at the mth range bin and lth velocity bin,  then the corresponding element of r should be non-zero; otherwise, it 

is zero. Then, using the model in (2), we obtain the linear system of equations 

 ΨrrΨΨs == TTT ]   [ 21

      

 (9) 

where Ψ  is the MLN ×2 dictionary matrix and  the nth row of the MLN × matrix iΨ  is given by 
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In other words, for a scene with K moving targets, the measurement vector s  is a linear combination of only K specific 

columns from the dictionary .Ψ  In order to recover the target indicator vector, we need to determine which columns of 

Ψ contribute to the measurement vector .s This can be accomplished through use of greedy sparse approximation 

methods,
14

 which determine the support of the sparse vector in an iterative manner. In this paper, we use orthogonal 

matching pursuit (OMP) for the sparsity based reconstruction.
15 

3.2 Sparse Reconstruction of a Single Moving Target 

For a single moving target with initial range 01R  and velocity ,1v a single iteration of the OMP algorithm is required to 

recover the target indicator vector. The column index of Ψ that corresponds to the target range-velocity grid-point is 

identified by locating the position of the highest peak of the 1×ML  vector .sΨy
H= Using (5) and (10), the element of 

y  corresponding to the (m, l)th range-velocity grid-point can be expressed as 
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It is clear from (11) that the highest peak of y occurs when 01RRm =  and ,1vvl = thereby correctly identifying the 

support of the target indicator vector .r The estimate r̂ is obtained as ,ˆ †
sψr =  where †ψ  is the pseudoinverse of the 

column of Ψ corresponding to the identified index.    

3.3 Sparse Reconstruction of Two Moving Targets 

Similar to the sparse reconstruction of a single moving target, it can be shown in a straightforward manner that two 

iterations of the OMP algorithm identify the correct set of column indices of Ψ  for the case of two targets moving with 

different velocities.  



 

 
 

 

Next, we consider two targets of equal amplitudes )( 21 ρρρ ==  at initial ranges 01R  and ,02R  both moving with the 

same velocity .v  Two OMP iterations are required to localize the two targets. The first iteration of OMP will locate the 

index that corresponds to the highest peak position of .sΨy
H=  In this case, the element of y  corresponding to the (m, 

l)th range-velocity grid-point can be expressed as 
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Eq. (12) can be simplified as 
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which implies that the highest peak will occur for the grid-point corresponding to 
2

0102 RR
Rm

+
=  and .vvl =  That is, 

the first iteration fails to identify a valid target initial range. As a result, the subsequent iteration will also produce an 

erroneous index value. Thus, similar to conventional dual-frequency algorithm, the sparsity based scheme will fail to 

localize two targets moving with the same velocity. 

3.4 Sparse Reconstruction under Reduced Time Samples  

The signal model in (9) can be extended to the case where some of the time samples at each frequency are unavailable 

due to intentional or unintentional interference and/or impulsive noise. This is accomplished through the introduction of 

an )2(  2 NNNN AA <×  measurement matrixΦ to obtain the reduced set of measurements as 

 ΦΨrs =
      

 (14) 

The measurement matrix can be of different types, as reported in Refs. [16-18]. Given the reduced measurement vector 

s of length NA, we can recover r in a manner similar to that for the full measurement set case. Again, the sparsity based 

scheme will work as long as the multiple targets are moving with different velocities and a sufficient number of samples 

are available. More details on the relation between the number of samples and the scene sparsity for OMP can be found 

in Ref. [15]. 

4. SIMULATION RESULTS 

We present simulation results for localization of point targets undergoing uniform motion using the sparse reconstruction 

scheme under both cases of full and partial availability of time samples at the two carrier frequencies. Conventional 

Doppler preprocessing based dual-frequency results are also provided in each case for comparison. The carrier 

frequencies used in the simulation are 9901 =f MHz and 11 =f GHz, yielding an unambiguous range of 15 m.  The 

target space extends from 0 to 15 m in range and -1 m/s to +1 m/s in velocity and is divided into 2115× grid points in 

range and velocity, resulting in 315 unknowns. The time response of the target space at each carrier frequency consists of 

 100=N time samples.  Independent and identically distributed Gaussian noise with a signal-to-noise ratio (SNR) of 0 dB 

is added to the measurements at each carrier frequency. 

Three different configurations of two unit-amplitude moving targets )1( 21 == ρρ  are considered. First, the two targets 

are assumed to be at initial ranges 301 =R m and 602 =R  m, moving with respective velocities 3.01 −=v m/s and 

5.02 =v  m/s. Fig. 1 shows the joint range-velocity estimates of the two moving target scene obtained with OMP using 

all  2002 =N time samples. We can clearly see that the sparse reconstruction approach provides accurate range and 

velocity estimates of both targets.  For comparison, the conventional approach is also used to estimate the target ranges 

and velocities. Fig. 2 depicts the Doppler spectra corresponding to the two carrier frequencies. The true target Doppler 

shifts are indicated by red dashed lines. We observe that the peaks coincide in each case with the correct Doppler 

frequencies. The initial range estimates, obtained using the phases extracted from the Doppler domain in (7), are 3.30 m, 

and 6.19 m, respectively. The biases in the conventional range estimates are attributed to the low SNR.
19

 



 

 
 

 

 
Figure 1. Sparse reconstruction result for two moving targets initially at 3 m and 6 m, moving with -0.3m/s and 0.5 m/s, 

respectively. 

 

 

(a)        (b) 

Figure 2. Doppler Spectrum of two targets initially at 3 m and 6 m, moving with -0.3 m/s and 0.5 m/s at (a) the first carrier frequency 

and (b) the second carrier frequency. 

Next, we consider two point targets at the same initial range, i.e., 60201 == RR m, and moving with respective 

velocities 3.01 −=v m/s and 5.02 =v  m/s. Fig. 3 shows the corresponding range-velocity estimates obtained with OMP 

using all  2002 =N time samples. The sparse reconstruction approach provides accurate range and velocity estimates of 

both targets in this case as well.  On the other hand, the conventional approach provides biased initial range estimates of 

6.04 m and 5.98 m, which are obtained using the phases extracted from the Doppler spectra corresponding to the two 

carrier frequencies shown in Fig. 4.  



 

 
 

 

 
Figure 3. Sparse reconstruction result for two targets both initially at 6 m, moving with -0.3 m/s and 0.5 m/s, respectively. 

 

 
(a)       (b) 

Figure 4. Doppler Spectrum of two targets both initially at 6 m, moving with -0.3 m/s and 0.5 m/s at (a) the first carrier frequency 

and (b) the second carrier frequency. 

 
The third case assumes two point targets at initial ranges 401 =R m and 602 =R  m, both moving with the same velocity 

5.021 == vv m/s. Fig. 5 depicts the sparse reconstruction result obtained with OMP using all  2002 =N time samples. 

As expected, the sparsity-based approach fails to correctly localize the two targets in the range-Doppler space. The 

Doppler filtering approach fails as well because the target returns cannot be separated in the Doppler domain as shown in 

Fig. 6. 



 

 
 

 

 
Figure 5. Sparse reconstruction result for two targets initially at 4 m and 6 m, both moving at 0.5m/s  

 

 

 (a)     (b) 

Figure 6. Doppler Spectrum of two targets initially at 4 m and 6 m, both moving with 0.5 m/s at (a) the first carrier frequency and (b) 

the second carrier frequency. 

 
Finally, we consider the case of limited availability of the time samples at the two carrier frequencies. We assume that 

only 5 randomly selected samples are available at each carrier frequency, leading to NA = 10.  The two targets are 

assumed to be initially at 301 =R m and 602 =R m, moving with respective velocities 3.01 −=v m/s and 5.02 =v  m/s. 

Fig. 7 shows the sparse reconstruction result, which clearly yields accurate estimates of the range-velocity pairs 

associated with the two targets. Fig. 8 shows the Doppler spectra at the two carrier frequencies using the limited time 

samples (the unavailable samples were taken as zero in the Fourier transform operation). Clearly, the high aliasing noise 

power due to the randomized 5% time samples overwhelms the signal Doppler spectra,
20

 and renders target localization  

infeasible.  



 

 
 

 

 
Figure 7. Sparse reconstruction result using 5% of the measurements for the case of two moving targets initially at 3 m and 6 m, 

moving with velocities -0.3 m/s and 0.5 m/s.  

 

 
Figure 8. Doppler Spectrum of two targets initially at 3 m and 6 m, moving with -0.3 m/s and 0.5 m/s using 5% of measurements at 

(a) the first carrier frequency and (b) the second carrier frequency. 

 

5. CONCLUSION 

In this paper, we presented a moving target localization approach based on sparse reconstruction for dual-frequency 

radar measurements. Unlike the two-step conventional dual-frequency approach that requires Doppler preprocessing 

followed by phase comparison for target localization, the sparsity-based technique can jointly estimate the range and 

velocity of the moving targets. Moreover, it is able to accurately localize the targets in range-velocity space even when 

some of the time samples are corrupted by noise or interference and are thus unavailable. However, similar to the 

conventional approach, the sparsity based scheme can localize moving targets only when they are moving with distinct 

velocities. Supporting results based on computer simulation are provided under both full and partial availability of time 

samples at the two carrier frequencies.  
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