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Abstract—A single snapshot fast computational Fourier-based
direction-of-arrival (DOA) estimation method is introduced. This
method applies the fast Fourier transform (FFT) to sensor data
and performs effective cancellation of spectral leakage caused
by sidelobe interactions, leading to unbiased DOA estimates of
multiple sources. Successful elimination of spectral leakage is
achieved by a sequential removal of strong sinc functions in
the spatial frequency domain through an iterative interpolation
process. Simulation results demonstrate superior performance
of the proposed method over beamforming and other iterative
FFTbased DOA estimation techniques, as well as the high-
resolution Root-MUSIC algorithm.

Index Terms—Direction-of-arrival (DOA) estimation, single
snapshot, fast Fourier transform (FFT), fast iterative interpo-
lation.

I. INTRODUCTION

The problem of single-snapshot, multiple source DOA esti-
mation arises in many radar applications, [2], [3], [4], [5].
Conventional beamforming, though is able to handle both
cases of coherent and independent sources, suffers from DOA
estimation bias, irrespective of the employed spatial tapering.
This bias is caused by spectral leakage through sidelobe
interactions of strong or adjacent sources. Reduction in DOA
estimation bias can be achieved through a correction term,
which has only been derived in the specific case of two
sources, [6]. A more effective mitigation of the bias requires
iterative schemes, [7], [8], [9]. In the CLEAN algorithm [7],
[10], [11], the strongest source is estimated and removed
in each iteration. Improvement over the CLEAN algorithm
is obtained by refining the source DOA estimates through
repeating the iterative process, which describes the RELAX
algorithm [9].

The RELAX algorithm iteratively refines the DOA estimates
of a growing subset of sources until all sources are obtained.
In so doing, it requires FFT computations for each source
refinement. In addition, the performance of the estimator is
limited by the coarseness of the spatial frequency grid, which
necessitates sufficient zero-padding to achieve the desired
accuracy. We adapt a recently proposed fast iterative multi-
component frequency estimator [12], [13] to beamforming for
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the single snapshot multi-source DOA estimation problem. We
refer to the proposed technique as Fast Iterative Interpolated
Beamformer (FIIB). Unlike RELAX, FIIB only requires a
single FFT calculation on a coarse grid combined with interpo-
lation using a small number of additional Fourier coefficients.
The DOA estimates are refined over successive cycles; within
each cycle, all sources are sequentially estimated. The bias in
the DOA estimates is eliminated by incorporating a leakage
subtraction step into the iterations.

The FIIB has desirable convergence properties, which we
exploit by proposing an effective stopping criterion based on
an adaptive tolerance level. It has a computational complexity
of the same order as the FFT. It is shown to achieve excellent
DOA estimation performance even for components that are
widely separated in power. We demonstrate that the proposed
method outperforms both RELAX and the high-resolution
Root-MUSIC method, [14].

The paper is organized as follows. In Section II, we
present the signal model. In Section III, existing FFT-based
DOA estimation techniques are briefly reviewed. Section IV
describes the proposed algorithm, followed by a discussion
on its convergence and computational cost in Section V.
Simulation results are presented in Section VI and finally some
conclusions are drawn in Section VIIL.

II. SIGNAL MODEL

Consider a linear array of M equispaced sensors with inter-
element spacing, d, measured in wavelengths. The signals of L
narrowband point sources impinge on the array from directions
0¢, £ =1,...,L. The M x 1 single snapshot vector of signals
at the output of the array is given by

L
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where oy is the complex amplitude of the ¢-th source, n is
the M x 1 vector of additive Gaussian noise with zero mean
and covariance U%I M, and Iy is the M x M identity matrix.
The steering vector, a(6;), of the ¢-th source is defined as
a(ég) = |1, 67j27ru(0g)’ o 67j27r(M71)y(9Z)} T ’ @)
where v(#) £ dsin(d) € [—1,1] is the spatial frequency
associated with direction # and ()7 stands for transpose. For
simplicity of notation, we set v, = v(6,). The signal to noise
ratio (SNR) of the /-th source is defined as py = 101log;, ‘O;‘;‘z‘
We assume that the number of sources, L, is known a pri%ri
or through the use of an information-theoretic measure, [9].
Our objective is to estimate the DOAs 6y, { = 1,...,L by




estimating v, in a computationally efficient manner. In the
sequel, we present a new method for single-snapshot DOA
estimation using fast iterative interpolated beamforming.

The multi-source Cramér-Rao Bound (CRB) for DOA esti-
mation is given by the inverse of the Fisher information matrix
[15] and its expression is not reproduced here. In the single
source case, the CRB of the spatial frequency v(6) reduces to
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where p is the SNR. The CRB for azimuth angle, 6 is
CRB(6) = CRB(v) CRB(v) ‘ @

~ d?cos?(0)  d2cos?(sin!v)

III. EXISTING FFT-BASED DOA ESTIMATION
TECHNIQUES

In this section, we review two popular FFT-based DOA
estimation methods: the celebrated conventional beamformer
(BF) and the RELAX algorithm.

A. Conventional Beamformer Based DOA Estimation

In essence, the conventional BF steers the array response
towards the spatial direction that maximizes the output power
[3]. In the single snapshot case, the BF spectrum is defined as
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Given L, the DOAs can be estimated by locating the L highest

peaks of the BF spectrum. For the special case of a single

source, the BF-based estimator (BFE) simplifies to the deter-

ministic maximum likelihood estimator [3]. But, this requires
that (5) is computed on an infinite number of grid points.

In practice, the BFE is implemented efficiently using the
FFT. Let X(*)[k] be the discrete Fourier transform (DFT) of
x evaluated on a uniform grid of K = zM points, that is

X@[k] =FFT(x,K), k=0,1,...,K-1, (6

where the integer z > 1 defines the amount of zero padding
required to compute a K-point FFT. The DOA estimates are
then given by the L highest peaks of the discrete spectrum
2
Porlk] = | XK )
For high accuracy, the discrete spectrum (7) should be calcu-
lated using large values of z. In fact, for an SNR p, the required
z X v/Mp can grow quite large with M and p. It is worth
noting that, for the multiple source case, the BF based DOA
estimator suffers from an estimation bias. Extensive research
efforts to address this problem have traditionally focused on
reducing the bias by pre-windowing the signal, [16], [17]. This
approach, however, comes at the cost of higher variance of the
estimates. In [6], a simple method for bias reduction, specific
to the case L = 2 sources, was developed. But, this method
does not eliminate the bias, neither does it apply to the L >2
case.

B. RELAX Based DOA Estimation

The RELAX algorithm was developed in [9] for sinusoidal
parameter estimation and modified in [18] for applications to
sensor arrays. It estimates the source DOAs via finding an
iterative solution to the following nonlinear problem
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where a £ [ay,...,az]T and v £ [vy,...,v7]T. Instead
of performing an exhaustive multi-dimensional search, RE-
LAX solves (8) sequentially over L cycles. During the J-th
(1 < J < L) cycle, the algorithm iteratively estimates the
parameters of the J strongest sources, where the estimates
from the (J — 1)-th cycle are used as initial estimates. The
signal associated with the ¢-th source is obtained as

J
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For each of the source signals in (9), the single-source problem
is solved via the BF method with a zero-padded FFT, that is,
X7 [k] = FFT (x4, K),

k=0,1,....,K—1.  (10)

It is worth noting that (10) needs to be calculated for every
source during each iteration over all L cycles. More details on
the implementation of RELAX can be found in [18].

IV. PROPOSED FAST ITERATIVE INTERPOLATED
BEAMFORMING ESTIMATOR

The proposed FIIB technique is non-parametric and is based
on the FFT to achieve unbiased and accurate estimation of
multiple source DOAs. Like many approaches in the liter-
ature, our technique uses an estimate-and-subtract strategy
to successively extract the sources in an inner loop. This
inner loop is then wrapped in an outer loop that allows
the estimates to be refined in order to eliminate the bias
at convergence. At the heart of the algorithm is a simple
yet highly accurate interpolation strategy that is combined
with a leakage subtraction scheme. This combination endows
the algorithm with excellent convergence properties. Unlike
RELAX, the proposed technique does not require any zero-
padding and is capable of tracking the CRB at all SNRs,
making it an effective approach for Fourier-based estimation
in the multi-source case.

The FIIB algorithm is given in table 1. The conventional
beamforming coefficients X[n] are obtained using the K-
length FFT, for small z = 1 or 2. The subsequent processing
is carried out in the frequency domain, avoiding the need to
re-use the FFT. In the first iteration, we obtain coarse estimates
of the L DOAs sequentially, starting with the strongest source.
Specifically, for the /-th source, we first subtract the previously
estimated sources from the signal as shown in Step (i) and
then locate the highest peak of the spectrum in Step (ii). This
ensures that the previously estimated /—1 sources are removed,
exposing the /-th source. Note that S;[n] in Step (i) is the DFT



coefficient of the ¢-th source steering vector at the frequency
= - That is Si[n] = S;(v) |V:% where
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The coarse estimate of the ¢-th source is then refined using
interpolation on the Fourier coefficients in steps (iii) — (vi).
Fourier-based interpolation methods have achieved a high
degree of maturity in single harmonic frequency estimation
[19], [20]. In the multiple signal case, on the other hand, they
have been much less appealing due to inherent bias induced
by spectral leakage. Combining an interpolation strategy with
the successive estimate-and-subtract approach has the potential
to eliminate the bias and give accurate estimates, provided
the interpolation function has suitable convergence properties
when implemented iteratively. These exact properties are of-
fered by the interpolator of [21]. To refine the DOA estimate
Dy, we calculate in Step (iii) two new leakage-corrected DFT
coefficients that are p = i% bins away from 7. That is,

(1)
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X, () = X (90 + p)
L
= X(o+p) - }:zlw+m, (12)

where (11) is used to express the leakage DFT coefficients as
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The leakage-free coefficients of (12) are then used in Step
(v) to obtain the discriminant function h, and the frequency
and amplitude estimates are updated in Steps (vi) and (vii).
Here, Re[e] defines the real part of e. This procedure is
executed for all sources (inner loop) and the algorithm is
run for () iterations or until convergence (outer loop). The
algorithm is summarised in the following sequence for each
source: 1) subtract all other sources (Step 1), 2) in first iteration
find coarse estimate (Step ii), 3) refine the DOA estimate
(Steps iii-vi), and 4) Obtain the complex amplitude estimate
(Step Vu) Finally, the DOA of source ¢ is calculated as
0, = sin~! (/d).

V. CONVERGENCE AND COMPUTATIONAL COMPLEXITY

In the single source case, the performance of the estimator
is only affected by the noise, and the interpolation converges
in 2 iterations [21]. Convergence is defined as the point where
the distance between the estimate and the true frequency is
of lower order than the CRB. In the multi-source case, the
iterative procedure was shown in [22] to converge to the fixed
point of the iteration which coincides with the true frequencies.
The convergence rate was also derived and found to depend
on the interplay between leakage and noise. We observe two
cases. If the maximum leakage is smaller than the noise, which
occurs at sufficiently low SNR, then convergence is dictated by
the noise and is achieved only in two iterations. If the leakage
is stronger than the noise, it gets reduced by the algorithm
below the noise level, at which point only one additional
iteration is required for convergence. At convergence, the

TABLE I
THE PROPOSED FIIB ESTIMATOR

Initialization:
Put p=0and @y =0foré=1...L
Let X =FFT(z,K), withz=1o0r 2, and K = zM
Set q=20

Loop until @ iterations or convergence: (Outer Loop)

qg+—q+1
For ¢ =1...L do (Inner Loop)
if g == 1 then
L
X[n] = X[n] — Z ,n=0...K—1 @
i=1,i
Dy = — arg max |X[n]\2 (i)

K 1<n<K

Fine Frequency Estimation:
1

S z
Xip(De) = Xap(Dg) — Z i £p), p=5 (i)
i=1,i
where X, (0p) = X (9 p) (iv)
Xp(@)+X_p (%)
h Re[xpm) _pwj N\
— U+ h (vi)
1% Dy + — vi
{ Oy
1 (M2 o L
&= > alkle I KR — | Z &S (0y) p (v
k=0 i=1,i#£L
Output: 7y < 2= for {=1...L

algorithm is unbiased and the estimation variance is of the
same order as the CRB.

In [1], it was suggested that the algorithm should run until
the maximum difference between two successive frequency
estimates is less than a specified tolerance. The optimal
tolerance value, however, depends on the SNR and number
of antennas M, and setting it is not a trivial matter. A value
set too large could fail to eliminate the estimation bias, while
a small value can incur a higher than necessary computational
burden. Thus, we propose an adaptive approach where the
tolerance of the ¢-th source is set adaptively, depending on
its CRB, that 7, = CRB(%y). This strategy ensures that a
component with high SNR has a small tolerance value in line
with its CRB, but it requires the calculation of the CRB at
every iteration. Since the single source CRB lower bounds the
corresponding multi-source CRB, we adopt the single source
CRB as given by (3). In this equation, the source SNR is
obtained from the estimated source ampliude and an estimate
of the noise power.

Let {ﬁlg"’),déq)}lggg 1 be the frequency and amplitude es-
timates at iteration q. The following calculations are carried
out after Step (vii) in Table I:

1) Estimate the noise power using the mean residual power:

L
1
6% = 7 1< ; dpal(Dy)

2) For the /-th source, obtain an estimate of the SNR as
Pv = W‘ and then calculate the tolerance 7, using (3).

3) If |D (Q) I/éq_l)‘ <1 V1< /¢ <L, then stop.

2
(14)
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Fig. 1. RMSE performance as a function of SNR for Source 1 (the Source
2 result is identical).

Now, the estimator requires the calculation of the FFT only
once at a computational cost of O{M log, M }. Then, two new
DFT coefficient are used per source in each iteration, which
requires O{2LM} calculations. Consequently, the overall
complexity for @ iterations is O{M log, M + Q(2LM + k)},
where k is a constant that accounts for additional overhead
per iteration (including the calculation of the tolerance).

For comparison, the RELAX algorithm requires a zero-
padded FFT with a dense grid corresponding to a large z.
The corresponding interval of the search grid is A = 27/K
measured in radians. At high SNR, the accuracy of the
estimates is limited by the bias attributed to the finite grid
size. This error is uniformly distributed over the interval
[~A/2,A/2] and has variance of A2/12. Let the CRB value
at the operational SNR be C'. To achieve the CRB, the grid
should be sufficiently dense such that %2 < C. This implies
that K .2 \/% o v/ pM3. For Q itera.tions, RELAX requirf?s
approximately QQLK log, K computations. For large M, this
amounts to O{M?2 log, M}, which grows faster than the
complexity of the proposed method. It is important to note
that the computational cost of RELAX also increases with
increasing SNR.

VI. SIMULATION RESULTS

Consider a uniform linear array (ULA) comprising M =
128 antennas with half-wavelength spacing. Signals originat-
ing from sources located in the far-field impinge on the ULA
from directions 6, with corresponding spatial frequencies v, =
0.5sin(f;). The source magnitudes, |ay|, are set according
to the desired SNRs and their phases are uniformly drawn
from the interval [0, 27]. We model the noise as zero-mean

Gaussian with variance ¢2 = 1. In all examples, we use

n
5,000 independent runs and convert the spatial frequencies
to DOAs in degrees. We compare the proposed method to the
RELAX and Root-MUSIC algorithms (using the optimized
MATLAB™ implementation of Root-MUSIC). Note that we

adopt for a subarray size of % — 1 for Root-MUSIC.

Two-Source DOA Estimation Performance Versus SNR

In this example, we examine the estimation performance vs.
SNR for two sources. We set |a;| = |aa|, and the electrical
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Fig. 2. Ratio of execution time of the proposed and RELAX algorithms to
the conventional BF versus SNR.

angle separation between them to 1.8 BW, where the bin width
BW = i—}r We implement RELAX for two zero-padding
factors, z = 8 and z = 32, and FIIB for z =1 and z = 2.

Fig. 1 gives the RMSEs versus SNR for Source 1 (the curves
for source 2 are very similar as shown in the insets). The
results confirm that the performance of RELAX coincides with
the CRB at moderate SNR but deviates from it at high SNR
values with the RMSE saturating as a result of performing the
FFT on a finite grid. This variance floor can be reduced by
increasing the zero-padding factor, i.e., using a denser grid,
but this comes at the price of increased computational load.
It is clear from the figure that the proposed FIIB algorithm
achieves the CRB at all SNR values. It outperforms RELAX
at high SNR and is slightly better than Root-MUSIC at all
SNRs. Also, FIIB has a better threshold than Root-MUSIC. As
the threshold performance is affected by the amount of zero-
padding, RELAX naturally has a slightly better breakdown
threshold than the other algorithms.

In Fig. 2 we present the ratio of the execution times of
the algorithms to the FFT. The superiority of the proposed
algorithm in this respect is evident. Interestingly, the intro-
duction of the adaptive tolerance leads to a reduction in
computational cost for the proposed estimator, but an increase
in that of the RELAX algorithm. This is due to the fact that
RELAX cannot converge owing to the bias under finite grid
size, leading to a variance floor. FIIB, on the other hand,
requires fewer iterations on average as it rapidly converges.
We point out that doubling the zero-padding does not incur
any significant increase in computational cost. Finally, notice
that Root-MUSIC is much more computationally expensive
that the other two algorithms. The variation of its execution
time is due to the calculation of the eigenvalues. This would
explain why there is a slight reduction in execution time as
the SNR drops below the threshold (which can be seen in Fig.
4 to be around -5dB). As the SNR drops, the noise dominates
and the covariance matrix tends towards the diagonal.

Performance As a Function of Source Separation

In the second example, we examine the performance as
a function of the source separation. We use two sources
with equal powers and set the SNR equal to 30dB. Without
loss of generality, we take the phase of Source 1 to be 0,
whereas that of the second source is drawn uniformly from the
interval [0, 27]. We vary the source separation from, a sub-bin



S-FIIB, z =2

-© RELAX, z = 32
-+ Root-MUSIC
-- CRB

RMSE [deg]

0.8 1 1.2 1.4 1.6 1.8 2 22 2.4 26 2.8
Electrical Frequency Separation (Bins)

Fig. 3. RMSE performance of Source 1 versus the electrical angle separation
between the two sources.

resolution, 0.75BW to 2.9BW. We compare, in Fig. 3, the
FIIB (with z = 2) to RELAX (z = 32) and Root-MUSIC.
First, notice that although FIIB is an FFI-based estimator,
it has high-resolution capability. In fact, it outperforms both
RELAX and Root-MUSIC at all simulated source separations.

A. Three Sources with Unequal Powers

We now demonstrate the performance of FIIB in the case
of three sources with unequal powers. This scenario may be
encountered in many practical applications, such as radar-
assisted smart automotive systems where the target of interest
is observed against a background of multipath reflections
and/or interference from other vehicles. We choose the DOA
of Source 2 randomly and set the DOAs of Sources 1 and 3,
respectively, at 1.8 BW to the left and 2.3BW to the right of
source 2. Additionally, we take the power of Sources 1 and 3
to be 5dB and 10 dB respectively below that of Source 2.

[~%-FIIB (z = 2)
-S-Root-MUSIC
10'F ---cRB

RMSE [deg]

SNR [dB]

Fig. 4. RMSE vs SNR for a three-source case. The bottom set of curves
belong to Source 2, the middle set to Source 1, and the top set to Source 3.

Fig. 4 shows the RMSEs of the three sources. We only
display FIIB and Root-MUSIC, since RELAX performs worse
than the other two. We see that FIIB achieves the CRB and has
a lower RMSE than Root-MUSIC. Also, the SNR differential
between the three sources conforms to the chosen power ratios.

VII. CONCLUSIONS

We have examined the problem of DOA estimation of
multiple sources in noise. We proposed a new, high fidelity

estimation algorithm that enjoys the same computational com-
plexity as the FFT, is capable of delivering unbiased DOA
estimates, and achieves the CRB for each of the sources
individually. We presented simulation results demonstrating
the superiority of the proposed estimator over the well-known
RELAX and Root-MUSIC algorithms in terms of accuracy,
resolution and speed.
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