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Dual-Function MIMO Radar Communications
System Design Via Sparse Array Optimization

Xiangrong Wang, Aboulnasr Hassanien, and Moeness G. Amin

Abstract— Spectrum congestion and competition over fre-
quency bandwidth could be alleviated by deploying dual-
function radar-communications systems, where the radar plat-
form presents itself as a system of opportunity to secondary com-
munication functions. In this paper, we propose a new technique
for communication information embedding into the emission
of multiple-input multiple-output (MIMO) radar using sparse
antenna array configurations. The phases induced by antenna
displacements in a sensor array are unique, which makes array
configuration feasible for symbol embedding. We also exploit the
fact that in a MIMO radar system, the association of independent
waveforms with the transmit antennas can change over different
pulse repetition periods without impacting the radar functional-
ity. We show that by reconfiguring sparse transmit array through
antenna selection and reordering waveform-antenna paring, a
data rate of megabits per second can be achieved for a moderate
number of transmit antennas. To counteract practical imple-
mentation issues, we propose a regularized antenna selection
based signaling scheme. The possible data rate is analyzed and
the symbol/bit error rates are derived. Simulation examples are
provided for performance evaluations and to demonstrate the
effectiveness of proposed DFRC techniques.

Index Terms— Antenna selection, antenna permutation, dual-
function radar-communications, MIMO radar, spectrum sharing

I. INTRODUCTION

Recently, the ongoing intensive research has been devel-
oping multi-function solutions to the coexistence of radar and
communications in the increasingly congested radio frequency
(RF) spectral environment. Competition over frequency spec-
trum between radar and communications could be significantly
alleviated when both systems are allowed to share the same
spectrum resources and a single platform hardware [1]–[4].
This requires the establishment of dual system functionalities
where identical signals, same frequency and bandwidth, and
a common transmit platform are deployed to fulfill the objec-
tives of both radar and communication operations [5], [6]. A
dual-function radar-communications (DFRC) system utilizing
waveform diversity in tandem with amplitude/phase control
has been introduced in a number of papers [7]–[12]. It is
assumed that the primary function of the antenna array is
to enable a pulsed radar emission while providing the signal
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and system of opportunity to a secondary communication
function concurrently during the radar pulse and with the same
bandwidth. The DFRC systems are capable of making full use
of the radar resources such as high quality hardware and high
transmit power.

Different signaling schemes for embedding information into
the radar pulsed emissions have been developed to establish a
dual-function system that simultaneously performs both radar
and communication functions [13]–[19]. For example, sidelobe
amplitude modulation, coherent and noncoherent phase mod-
ulation, multi-waveform amplitude-shift keying (ASK) were
proposed to successfully embed information into the radar
emission [20]–[23]. However, all these signaling strategies
were proposed for information embedding into the traditional
phased array radar, where only scaled versions of a single
waveform are transmitted, and thus cannot exploit waveform
diversity. The multiple-input multiple-output (MIMO) radar
generates a set of orthogonal waveforms via each element,
thereby resulting in waveform diversity. For DFRC systems,
the waveforms, that are simultaneously emitted from an an-
tenna array in a MIMO arrangement, combine in the far-field
to realize a desired radar waveform in one spatial direction
and an information-bearing communication signal in another
direction [24]–[26]. Information embedding into the emission
of MIMO radars has been considered in [27], where one
phase-shift keying (PSK) communication symbol is embedded
in each orthogonal waveform. The achievable symbol rate
is restricted by the number of orthogonal waveforms. To
increase the data rate, frequency hopping codes were utilized
to generate a set of orthogonal waveforms in [28]. All these
work has assumed either a uniform linear array (ULA) or an
arbitrarily shaped array. To the authors’ best knowledge, not
much effort has been exerted to fully deploy spatial degrees
for the design of dual-functional systems.

The successful co-existence of radar and communication
functions requires not only the temporal diversity provided
by advances in orthogonal waveform design, but also the
spatial degrees of freedom (DoFs) brought about by properly
utilizing the multi-sensor transmit/receive array configurations
for suppressing cross-interference between the two functions.
Although the nominal array configuration for existing DFRC
systems is uniform and fixed-structured, it is not necessarily
optimum in every sense and completely ignores the additional
DoFs offered by array configurations. As antenna array tech-
nology progresses, sophisticated antenna selection schemes
through RF switches and array reconfiguration methods that
were previously infeasible begin to become possible. Sparse
antenna arrays with non-uniform inter-element spacing attract
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increased attention in multi-sensor transmit/receive systems
as an effective solution to reduce the system’s complexity
and cost, yet retain multifaceted benefits [29], [30]. Taking
the notion of sparse arrays further, here we propose a tech-
nique utilizing array configuration for reliable communication
symbol embedding concurrently with MIMO radar operation
through antenna selection. We investigate the problem of ex-
pressing sparse array configurations and their association with
independent waveforms as unique communication symbols.
In spectrum sharing perspective, the deployment of reconfig-
urable sparse arrays by antenna selection can, undoubtedly,
alleviate pressures on the resource management and efficiency
requirements. Simulation results show that the versatility of
sparse array configurations facilitates the realization of multi-
ple functions on the same system.

The novelty of this paper is summarized as follows:
• We propose an antenna selection based signaling strategy

for DFRC systems to embed communication symbols into
transmit array configurations.

• We propose a hybrid selection and permutation strategy
to combine array reconfiguration with waveform-antenna
paring for communication symbol embedding in MIMO
radars, which can achieve a high data rate and signifi-
cantly reduce symbol error rate.

• From the viewpoint of practical hardware implementa-
tion, we propose a regularized antenna selection based
modulation scheme for DFRC systems, which is capable
of achieving the bit error rate (BER) as low as binary
PSK (BPSK) and high robustness against communication
angle estimation error.

The rest of the paper is organized as follows. We provide
the system configuration and signal model of the DFRC
system with antenna selection network in section II. The
unrestricted antenna selection based signaling strategy is pro-
posed in section III. We then combine array reconfiguration
with reordering waveform-antenna paring for high data rate
communications in section IV. The regularized antenna selec-
tion scheme is elaborated in section V. Simulation results are
provided in section VI. Section VII summarizes the work of
this paper.

II. SYSTEM CONFIGURATION AND SIGNAL MODEL

We consider a joint MIMO-radar communications platform
equipped with a reconfigurable transmit antenna array through
an antenna selection network as shown in Fig. 1. This joint
system can simultaneously detect radar targets of interest while
sending communication symbols to downlink users. There are
M transmit antennas uniformly located in the platform with
an inter-element spacing of d and K (K <M ) front-ends
installed for waveform transmitting. The antenna selection
network comprises M RF switches and their on/off status can
be changed to connect/disconnect the corresponding antennas
with the following front-ends. Note that only K antennas
are switched on for waveform transmitting during each pulse
repetition interval (PRI) and the remaining M −K antennas
are either switched off or connected to resistors. Suppose a
transmit array is configured with K selected antennas located

at pkd, k = 1, . . . ,K with pk ∈ {0, . . . ,M − 1}. The radar
receiver employs an array of N receive antennas with an
arbitrary linear configuration. It is assumed that both the
transmit and receive arrays are closely spaced such that a
target in the far-field would be seen from the same direction
by both arrays. Without loss of generality, a single-element
communication receiver is assumed to be located in direction
θc, which is exactly known to the transmitter.
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Fig. 1. Joint platform of a DFRC system with antenna selection network.

Let Ψk(t), k = 1, . . . ,K be a set of K orthogonal wave-
forms, each occupying the same bandwidth. In other words,
the spectral contents of all waveforms overlap in the frequency
domain. Assume that each waveform is normalized to have
unit power, i.e.,

∫
T
|Ψk(t)|2dt = 1, with T and t denot-

ing the waveform duration and the fast time index, respec-
tively. It is further assumed that the orthogonality condition∫
T

Ψk(t)Ψ∗k′(t)dt = 0 is satisfied for k 6= k′, where ()∗ stands
for the complex conjugate. Assume that Q far-field targets of
interest arriving from the directions θq, q = 1, . . . , Q, located
within the radar main beam, are observed in the background of
strong clutter and interferences, such as television, radio and
signals from other commercial communication services as well
as deliberate jammers. The N × 1 baseband representation of
the signals at the output of the radar receive antenna array is
given by,

x(t; τ) =

Q∑
q=1

βq(τ)
(

ãT (θq)Ψ(t)
)

b(θq) + n(t; τ), (1)

where τ is the pulse number, βq(τ) is the qth target reflection
coefficient1, ãT (θq) and b(θq) denote the steering vectors of
the sparse transmit array and the receive array, respectively,
(·)T stands for the transpose, Ψ(t) , [Ψ1(t), . . . ,ΨK(t)]T is
the K × 1 vector of orthogonal waveforms, and n(t; τ) is the
N ×1 vector of zero mean summarizing the unwanted clutter,

1The target reflection coefficients are assumed to obey the Swerling-II target
model [22], i.e., they remain constant during the entire pulse duration, but vary
independently from pulse to pulse
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interferences and white noise during the τ th radar pulse. In (1),
the sparse transmit array steering vector, ã(θ), can be defined
as,

ã(θ) = [ejk0p1d sin θ, . . . , ejk0pKd sin θ]T , (2)

where k0 = 2π/λ is the wavenumber and pk ∈ {0, . . . ,M −
1}, k = 1, . . . ,K. The steering vector of the MIMO radar
receive array, b(θ), can be defined in a similar way as that of
ã(θ).

The signal at the output of the communication receiver can
be modelled as

xc(t; τ) = αch(τ)ãT (θc)Ψ(t) + nc(t; τ), (3)

where αch(τ) is the channel coefficient of the received signal
that summarizes the propagation environment between the
transmit array and the communication receiver during the τ th
pulse and ã(θc) is the steering vector of the selected transmit
array toward the communication direction θc. In addition,
nc(t; τ) is the noise signal interfering the communication
process in the τ th radar pulse. We assume that the channel
coefficient αch is known or accurately estimated and remains
unchanged during the entire coherent processing interval of the
DFRC system. Therefore, for the rest of this paper, we remove
the dependency of the channel coefficient on the pulse index
τ .

At the MIMO radar receiver, the received signal components
associated with the individual transmitted waveforms can
be obtained using matched filtering to Eq. (1). The signals
observed at the output of the radar receiver are the KN × 1
extended vector of virtual data, that is,

yr(τ) = vec
(∫

T

x(t; τ)ΨH(t)dt

)
, (4)

=

Q∑
q=1

βq(τ)[ã(θq)⊗ b(θq)] + n(τ),

where vec(·) is the operator that stacks the columns of a
matrix into one column vector, ⊗ denotes the Kronecker
product, H stands for the Hermitian transpose, and n(τ) =
vec
(∫
T

n(t; τ)ΨH(t)dt
)

is the KN × 1 additive noise term
after matched filtering.

The communication receiver is assumed to have perfect
knowledge of the orthogonal waveforms Ψk(t), k = 1, . . . ,K.
Moreover, it is assumed that the phase synchronization be-
tween the transmit array and the communication receiver is
adjusted. Matched filtering the received data in Eq. (3) to each
waveform Ψk(t) yields,

yc,k(τ) =

∫
T

xc(t; τ)Ψ∗k(t)dt, (5)

= αchãk(θc) + nc,k(τ), k = 1, . . . ,K

where ãk = ejk0pkd sin θc denotes the kth entry of the se-
lected transmit array steering vector ã(θc) and nc,k(τ) =∫
T
nc(t; τ)Ψ∗k(t)dt, k = 1, . . . ,K are additive noise terms

after matched filtering. Array configurations denote the spatial
DoFs and can be combined with waveform design in temporal
domain to embed communication symbols concurrently with
MIMO radar functions. We elaborate on the deployment of

sparse arrays for symbol embedding in DFRC systems in
Sections III-V.

III. ANTENNA SELECTION BASED SIGNALING STRATEGY
FOR DFRC SYSTEMS

There are totally M antennas installed in the common trans-
mit platform and an antenna selection network is deployed to
select K out of M antennas. We deploy K orthogonal wave-
forms, Ψ1(t), . . . ,ΨK(t), and transmit them via the selected
K antennas. It is clear that the steering vectors of selected
sparse arrays can be estimated by the communication receiver
after matched filtering and utilized to embed communication
symbols from Eq. (5).

A. Information Embedding Scheme

The steering vector of the M -antenna full transmit array is
denoted as a(θ) and can be expressed as

a(θ) = [ejk0p1d sin θ, . . . , ejk0pMd sin θ]T . (6)

Denote the K×M selection matrix during the τ th radar pulse
as P(τ) ∈ {0, 1}K×M , where there is only one entry being
“1” in each row and in the kth column corresponding to the
kth selected antenna, k ∈ {1, . . . ,M}. Applying the selection
matrix P(τ) to the steering vector a(θ) of the full transmit
array yields the K×1 steering vector of the selected subarray,
that is,

ã(θ; τ) = P(τ)a(θ). (7)

The K orthogonal waveforms are transmitted via the selected
K antennas, and the N×1 complex vector of the radar received
observations in Eq. (1) can be rewritten as,

x(t, τ) =

Q∑
q=1

βq(τ)[aT (θq)PT (τ)Ψ(t)]b(θq) + n(t, τ). (8)

Let P = {1, . . . ,M} label the full set of antennas installed
in the transmit platform. During each radar pulse, a subset S
of K antennas are selected from the full set P for waveform
transmitting. Such a selection is essentially a combinatorial
problem. There are totally L = CKM = M !

K!(M−K)! different
subsets, Sl ⊂ P, l = 1, . . . , L, and each subset Sl corresponds
to a unique selection matrix P(τ) with “1” entries located
in the columns indicated by Sl, which in turn corresponds
to a unique steering vector ã(θ; τ). For each subarray Sl, a
communication symbol consisting of Nb bits can be defined.

Assume that the communication receiver knows its direction
θc relative to the stationary MIMO transmit platform. The
signal at the output of the communication receiver antenna
in Eq. (3) is remodelled as,

xc(t, τ) = αchaT (θc)PT (τ)Ψ(t) + nc(t, τ), (9)

Matched filtering the received data with the set of K orthog-
onal waveforms yields,

yc(τ) = vec
{∫

T

xc(t, τ)ΨH(t)dt

}
, (10)

= αchP(τ)a(θc) + nc(τ),

= αchã(θc; τ) + nc(τ).
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where yc(τ) = [yc,1(τ), . . . , yc,K(τ)]T and nc(τ) =
[nc,1(τ), . . . , nc,K(τ)]T . Thus, the communication receiver
signal at the output of the matched-filter is a scaled and noisy
selection of the full steering vector a(θc), meaning that the
selected sparse array Sl can be recovered from the received
vector yc(τ). We propose to utilize the steering vector of the
sparse transmit array Sl as codes to embed communication
symbols.

B. Detection of communication Symbols

As mentioned above, the steering vector of the selected
sparse array Sl, l = 1, . . . , L can be utilized to embed com-
munication symbols. Thus, a dictionary of L unique symbols
can be constructed as

D = {ã1(θc), . . . , ãL(θc)}, (11)

where ãl(θc) is the steering vector corresponding to the
selected sparse array Sl ⊂ P towards the communication
receiver. The cardinality L of the dictionary determines the
capacity of the communication system and is usually not a
power of 2. The fact that only a subset of L available symbols
is required offers flexibility in the design of the actual system
as well as improved noise immunity. A compressive study of
the selection of symbol subset will be discussed in the section
III-E.

Let us assume that the channel is estimated accurately. In
practice, training sequences can be periodically transmitted to
update the channel estimate and adjust phase synchronization
between the transmit array and the communication receiver.
During each radar pulse, an Nb-bit communication information
is first converted into the corresponding decimal number nd.
The K antennas comprised by the sparse array Snd

are then
selected to transmit the K orthogonal waveforms. The steering
vector of the selected transmit sparse array during the τ th radar
pulse can be estimated as,

â(θc; τ) = (1/αch)yc(τ). (12)

The communication receiver then calculates the distance be-
tween the estimated vector â(θc; τ) and each element of
the dictionary D, that is Dl = ‖â(θc; τ) − ãl(θc)‖2, l =
1, . . . , L. The embedded communication symbol can be found
with the smallest distance minlD

l and then converted into
the corresponding binary sequence. The detection of each
communication symbol requires LK complex multiplications,
thus computational complexity increases proportionally with
the data rate.

Given that the radar transmits one symbol per pulse, the
symbol rate of the communication system is identical to the
pulse repetition frequency (fPRF). The number of bits that can
be transmitted per symbol is

Nb = blog2Lc, (13)

where b·c stands for the largest integer that is no greater than
the argument. Thus, the resulting data rate of the antenna
selection based dual-functional systems is Nb × fPRF bit per
second (bps).

C. Angular Ambiguities

Note that the steering vector comprises the phase terms
φk = k0pkd sin θc, k = 1, . . . ,K, pk ∈ 0, . . . ,M − 1 pro-
duced by the displacement of the K selected antennas. The
mapping between the phase term φm = k0pmd sin θc,m =
1, . . . ,M and the antenna position pm is not one-to-one, as
the phase is periodic with a period of 2π. That means there
may exist multiple antennas in the array producing the same
phase term, giving rise to the problem of angular ambiguity.
The trivial ambiguity happens when θc = 0, that is when the
communication receiver is at broadside direction. The phases
are zero regardless of antenna positions and all entries of a(θc)
are one. Thus, no information can be embedded via antenna
selection. When |θc| is small, the phases produced by all the
M antennas are equally spaced on the unit circle with values
k0md sin θc,m = 0, . . . ,M − 1. As θc increases, the phase
difference between two adjacent antennas increases and the
M th antenna reaches an angle for which we have the largest
spread around the unit circle, that is,

φM = k0(M − 1)d sin θc = 2π − k0d sin θc. (14)

Solving Eq. (14) yields θcm = sin−1
(

2π
Mk0d

)
. We refer to this

angle as the maximal spread angle. When θc > θcm, it is likely
that two or more antennas exhibit the same phase value. This
happens when their phases are equal modulo 2π. In general,
angular ambiguities happen when (M −m)k0d sin θc = 2π,
giving θc = sin−1 2π

(M−m)k0d
for m = 1, . . . ,M − 1. It is

important to note, however, that when the arrival angle of
communication receiver θc is small, the performance may
be poor if the full number of bits is used. Therefore, it is
advantageous to transmit at the maximal spread angle θcm
which gives the best performance. We then describe a scheme
to mitigate the ambiguities and steer the performance of the
maximal spread angle to any receiver spatial angle.

The ambiguities described above can be mitigated by in-
troducing additional phase rotation to each transmit antenna.
Denote the vector of phase rotations assigning to the M
antennas as u = [ejϕ1 , . . . , ejϕM ]T . We pre-multiply element-
wise at the transmitter the vector of orthogonal waveforms,
Ψ(t), by the selected phase vector P(τ)u. That means once
an antenna is selected, the corresponding phase rotation is mul-
tiplied. Then the vector of phase-shifted waveforms become
Ψ̃(t) = diag(P(τ)u)Ψ(t), with diag(·) denoting a diagonal
matrix with the vector · populating along the diagonal. The
set of rotated waveforms Ψ̃(t) still preserve the orthogonality,
which is proved as follows,∫ T

0

Ψ̃(t)Ψ̃H(t)dt (15)

= diag(P(τ)u)

∫ T

0

Ψ(t)ΨH(t)dt diag(P(τ)u)H ,

= diag(P(τ)u)diag(P(τ)u∗),
= I,

Thus, the phase-rotated waveforms Ψ̃(t) does not affect the
normal operation of radar functions. The matched-filtered
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signal at the communication receiver in Eq. (10) becomes,

yc(τ) = αchdiag(P(τ)u)ã(θc; τ) + nc(τ). (16)

The received signal vector now has phases φ̃k = φk + ϕk =
k0pkd sin θc + ϕik , k = 1, . . . ,K, ik ∈ {1, . . . ,M}. Thus,
we can deduce a specific phase rotation for each transmit
antenna, such that the phases of all M antennas are uniformly
distributed around the unit circle at the spatial angle θc of
the communication receiver. That means, φ̃m = 2π(m −
1)/M,m = 1, . . . ,M . Then, the phase rotation for the mth
antenna can be calculated as,

ϕm =
2π(m− 1)

M
− k0pmd sin θc,m = 1, . . . ,M. (17)

In this manner, not only are we able to mitigate the ambi-
guities, but also to deliver the best symbol dictionary to any
receiver.

D. Symbol Error Rate

Let us assume without loss of generality that the transmitted
sparse array is Si, whose corresponding steering vector ãi
comprises K phases of value φ̃k = 2π(ik − 1)/M, ik =
{1, . . . ,M}. It is worth noting that the dependence of the
steering vector ãi on the angle θc of the communication
receiver is suppressed due to the additional phase rotations.
The symbols in the dictionary defined in Eq. (11) change to

ãl = [ej2π(l1−1)/M , . . . , ej2π(lK−1)/M ]T , lk = {1, . . . ,M}.
(18)

Let us define the distance between the estimated steering
vector âi and each code ãl in the dictionary as Dl = ‖âi−ãl‖2.
Then the probability of a correct symbol detection is given by

Pd = P
(
Di < Dl,∀l = 1, . . . , L, l 6= i

)
. (19)

It is worth noting that a symbol error may not occur even if the
noise places some phase φ̃k = 2π(ik − 1)/M of the received
signal closer to another constellation, 2π(lk − 1)/M, ik, lk ∈
{1, . . . ,M}, such that lk 6= ik, k = 1, . . . ,K, provided that
Di < Dl. Thus, for each symbol Si, we have

P
(
Di < Dl

)
≥ ΠK

k=1P (Di
k < Dl

k), (20)

where P (Di
k < Dl

k) denotes the probability of a correct
detection of the kth phase term. Detecting each phase of the
steering vector is similar to the M-ray phase-shift keying (M-
ary PSK) scenario, where every phase φ̃k is taken out of
M uniformly distributed signal constellations around a unit
circle with an angular separation of γ = 2π/M . The average
probability of symbol error for M-ary PSK modulation with
sufficiently high signal-to-noise ratio (SNR) is [31],

Q(ρ, γ) = erfc
(√

ρ sin(
γ

2
)
)
, (21)

where ρ stands for the SNR and erfc denotes the complemen-
tary error function. Thus, we have that

P
(
Di
k < Dl

k

)
= 1−Q(ρ, γ), k = 1, . . . ,K. (22)

Substituting Eq. (22) into Eq. (20) yields the lower bound of
the detection probability,

Pd ≥ [1−Q(ρ, γ)]K . (23)

The upper bound of symbol error rate (SER) is then obtained
by,

Pe = 1− Pd ≤ 1− [1−Q(ρ, γ)]K . (24)

The embedded symbol is detected by comparing the distance
between the estimated steering vector and each code in the
dictionary. Thus, it is preferred that the distance between any
two code vectors in the dictionary be maximized. For radar
modalities, target detection is the main objective. The detec-
tion performance is directly related to the efficacy of clutter
cancellation. As the same set of K orthogonal waveforms Ψ(t)
are transmitted during each PRI, there is no attendant Doppler
coherency degradation as existed in waveform modulation
scheme proposed in [32]. However, the transmit array config-
uration affects the radar detection performance significantly.
Thereby, the selection of symbol subset should consider two
criteria together, the performance of communication functions
and a satisfying radar transmit beampattern.

E. Selection of Constellation Symbols

We consider the first criterion of communication perfor-
mance, that is selecting a subset of Lb = 2Nb symbols
from L candidates, such that the distance between any two
symbols in the dictionary is maximized. Without loss of
generality, the total number M of installed antennas is as-
sumed to be even. As all the M antennas are uniformly
distributed around the unit circle with a phase difference
of 2π/M , it is intuitive that the two symbols with the
largest distance are ã1 = {1, ej2π/M , . . . , ej2π(K−1)/M}
and ã2 = {−1, ej2π(M/2+1)/M , . . . , ej2π(M/2+K−1)/M}. That
means each pair of antennas in symbols ã1 and ã2 are center-
symmetrically distributed in the upper and lower half circles,
respectively. The largest distance can be calculated as ‖ã1 −
ã2‖2 = 4K. Initialize the symbol subset as Dc = {ã1, ã2},
and zl are selection vectors corresponding to ãl such that
ãl = a(Z(zl)), l = 1, 2, where Z(z) denotes the sparse support
of vector z. The remaining Lb − 2 symbols can be found as
follows:

max
z,ν

ν, (25)

subject to ‖diag(z)a− diag(zl)a‖22 ≥ ν, l = 1, . . . , |Dc|,
z ∈ {0, 1}M , 1T z = K,

where a = [1, ej2π/M , . . . , ej2π(M−1)/M ]T is the steering
vector of the full array after phase rotation and the vector
comprised of the non-zero entries of diag(zl)a is a symbol in
Dc. The selection variable z is binary with entry one denoting
the corresponding antenna selected and entry zero discarded,
|Dc| stands for the cardinality of the symbol subset Dc. The
constraint 1T z = K controls the number of selected antennas
to be exactly K.

As explained in [33], the binary property of the selection
variable z ∈ {0, 1}M is tantamount to

max
z

zT (z− 1) subject to 0 ≤ z ≤ 1, (26)

where the inequality is the constraint applying to each entry in
vector z. Combining Eqs. (26) with (25) yields the following
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formulation,

max
z,ν

ν + µ[zT (z− 1)], (27)

subject to aHdiag(z)a− 2aHdiag(z)diag(zl)a +K ≤ ν,
l = 1, . . . , |Dc|,
0 ≤ z ≤ 1, 1T z = K,

where the trade-off parameter µ is used to control the emphasis
between symbol distance and the boolean property of the
selection vector z. Equal importance can achieved by setting
µ = 1.

Next, we consider the second criterion of radar transmit
pattern synthesis and the optimum dictionary is denoted as
Dr. As shown in Eq. (4), the virtual extended signal vector of
the MIMO radar is the Kronecker product between transmit
and receive array steering vectors. That is,

c(θ) = ã(θ)⊗ b(θ). (28)

Assume that the beamforming weight vector is w, the overall
beampattern of MIMO radar can be expressed as

B(θ) =
∣∣wHc(θ)

∣∣ =
∣∣wH [ã(θ)⊗ b(θ)]

∣∣ . (29)

We can see that the shape of overall beampattern is affected
by both transmit and receive array configurations. Since the
structure of receive array is fixed, it is preferred that sparse
transmit array configurations satisfy a certain desired power
radiation pattern, when combined with the given receive array.
The main function of MIMO radar is to concentrate the
transmit power within a certain angular sector Θ = [θmin, θmax],
where the radar signal may come from. The beampattern
corresponding to the sidelobe region Θ̄ is required to be
less than a pre-defined sidelobe level ε. The selection of
symbol subset satisfying the criterion of radar function can
be formulated as follows:

max
z,w,ρ

ρ+ µ[zT (z− 1)], (30)

s.t. |wHc(θi)− ejµ(θi)| ≤ ρ, θi ∈ Θ, i = 1, . . . , Lm,

|wHc(θk)| ≤ ε, θk ∈ Θ̄, k = 1, . . . , Ls

|Jmw| ≤ zm,m = 1, . . . ,M

0 ≤ z ≤ 1, 1T z = K,

where θi, i = 1, . . . , Lm and θk, k = 1, . . . , Ls are Lm and
Ls samples of the mainlobe region Θ and sidelobe region
Θ̄, respectively, and µ(θ) is the user-defined mainlobe phase
profile, ρ denotes the allowable maximum mainlobe ripple.
The weight vector w exhibits a block sparsity with N − K
blocks of M entries being zero. In addition, the matrix Jm ∈
{0, 1}N×MN is utilized to extract the [(m − 1)N + 1] ∼
(mN)th entries of the weight vector w. The matrix has “one”
entry in each row and in the [(m − 1)N + 1] ∼ (mN)th
columns, and all other entries being zero. The constraints
|Jmw| ≤ zm,m = 1, . . . ,M are used to promote the same
group sparsity of weight vector w as the selection variable z.

Clearly, the objective functions in Eqs. (27) and (30) are
concave, and it is difficult to maximize them directly. A
sequential convex programming (SCP) based on iteratively
linearizing the concave objective function is then utilized to

reformualte the non-convex problem to a series of convex
subproblems, each of which can be optimally solved using
convex programming [34], [35]. Taking the problem in Eq.
(30) as an example, the symbol selection in the (k+1)th
iteration can be formulated based on the solution z(k) from
the kth iteration as,

max
z,w,ρ

ρ+ µ[(2z(k) − 1)T z− z(k)T z(k)], (31)

s.t. |wHc(θi)− ejµ(θi)| ≤ ρ, θi ∈ Θ, i = 1, . . . , Lm,

|wHc(θk)| ≤ ε, θk ∈ Θ̄, k = 1, . . . , Ls

|Jmw| ≤ zm,m = 1, . . . ,M

0 ≤ z ≤ 1, 1T z = K.

Note that the SCP is a local heuristic and its performance
depends on the initial point z(0). It is, therefore, feasible to
construct the symbol dictionary by initializing the algorithm
with different feasible points z(0). The symbol subset selection
considering both criteria can be achieved by combining the
constraints in Eqs. (27) and (30). The detailed description of
the symbol subset selection is illustrated in Table. I. After
obtaining the selection vector z∗, the corresponding symbol
can be calculated as ã = a(Z(z∗)) = {ej2π(m−1)/M , z∗m =
1,m = 1, . . . ,M}.

IV. HYBRID SELECTION AND PERMUTATION BASED
SIGNALING STRATEGY FOR DFRC SYSTEMS

The MIMO radar receiver requires the knowledge of trans-
mit waveform and transmit antenna pairing, and does not
require pinning a specific waveform to a specific antenna
[36]. The flexibility of varying the selected transmit antennas
across K orthogonal waveforms over different PRIs can be
exploited to embed a large constellation of symbols. For each
selected K-antenna sparse array, the number of symbols that
can be embedded is a factorial of the number of transmit
antennas, that is K!. Thus, combining antenna selection with
permutating K independent waveforms to each selected an-
tenna over one PRI, a data rate of megabits per second can
be achieved by a moderate number of transmit antennas.
Taking this notion further, we propose a hybrid selection and
permutation based signaling strategy for DFRC systems in
this section. Since permutations used to assign the antennas
to the waveform set are known to the radar, the reordering
enables restoring the coherent structure of the MIMO radar
data, i.e. the primary MIMO radar operation is unaffected by
the secondary communication function.

The structure of hybrid selection and permutation based
signaling strategy remains the same as that of selection only
method and is depicted in Fig. 1. There are M antennas
installed on the platform and a specific subset of K antennas
associated with the communication symbols are switched on
for transmitting independent waveforms during each radar
pulse. Denote the K×M selection matrix and K×K permu-
tation matrix as P(τ) and Q(τ), respectively. The signal at the
output of the communication receiver antenna is remodelled
as,

xc(t, τ) = αchaT (θc)PT (τ)QT (τ)Ψ(t) + nc(t, τ). (32)
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TABLE I
THE DETAILED DESCRIPTION OF SYMBOL SUBSET SELECTION

Initialization Initialize symbol subset D = {}, initialize µ = 1.
Step 1 (Outer Loop) WHILE: |D| < Lb,
Step 2 Set k = 0 and maximum iteration number Km. Randomly initialize z(k).
Step 3 (Inner Loop) FOR k < Km

Solve Eq. (27) or (30) using Matlab embedded software CVX, set k=k+1;
END OF INNER LOOP

Step 4 If the obtained selection vector z is boolean and not included in D, calculate the corresponding symbol ã,
set D = [D, ã] and go to Step 1.

Step 5 If the obtained selection vector z is not boolean, go to Step 2;
Step 6 END OF OUTER LOOP

Matched filtering the received data with the set of orthogonal
waveforms yields,

yc(τ) = vec
{∫

T

xc(t, τ)ΨH(t)dt

}
= αchM(τ)a(θc)+nc(τ),

(33)
where M(τ) = Q(τ)P(τ). Thus, the communication receiver
signal at the output of the matched-filter is a (scaled and noisy)
selected permutation of the steering vector a(θc), meaning that
the product of selection and permutation matrices M(τ) can be
recovered from the received vector yc(τ) by determining the
ordering of K selected transmit antennas. We propose to uti-
lize the selected permutation of the steering vector M(τ)a(θc),
that is the ordered set of phases induced by selected antenna
positions, as the codes to embed communication symbols.

To mitigate angular ambiguity and maximize communica-
tion performance, the phase rotation imposed to each transmit
antenna per Eq. (17) can be deployed here. Thus, a dictionary
of K!× L symbols is constructed as,

D = {A1, . . . ,AL}, (34)

where Al = [Q1ãl, . . . ,QK!ãl] with Qk, k = 1, . . . ,K!
denoting the permutation matrix. In addition, ãl =

[ejφ̃l1 , . . . , ejφ̃lK ]T with lk ∈ {1, . . . ,M} and φ̃lk = 2π(lk −
1)/M . During each radar pulse, the K orthogonal waveforms
Ψk(t), k = 1, . . . ,K are transmitted through the ordered
subset of antennas with positions pk corresponding to the Nb-
bit information. Assume that communication receiver has a
prior knowledge of its angle θc relative to the joint transmit
array. The ordered selected steering vector can be estimated
as,

â(θc; τ) = (1/αch)yc(τ) ≈M(τ)a(θc). (35)

The communication receiver can then compare the estimated
vector â(θ; τ) to the dictionary D to obtain the embedded
communication symbols. As there are K! different ordering for
each selected subarray, the message bits that can be transmitted
during each pulse are

Nb = blog2(L×K!)c = blog2L+ log2K!c. (36)

Thus, the data rate, measured in bps, for the proposed hybrid
selection and permutation based signaling scheme can be
expressed as,

R = blog2L+ log2K!c × fPRF. (37)

It is worth noting that, not only the data rate can be
increased, but also the symbol error rate for the hybrid scheme
can be significantly reduced compared with that of selection-
only signaling scheme. The reason is that the permutation
of antenna positions can be utilized to further increase the
distance between the selected symbols ãl, l = 1, . . . , Lb in
Dc. The symbol selection for the dictionary Dp utilizing both
antenna selection and permutation can be formulated as,

max
Q,P,ν

ν, (38)

subject to ‖QPa− āk‖2 ≥ ν, k = 1, . . . , |Dp|,

where āk = QkPka ∈ Dp are already-selected symbols. As
the optimization variables Q and P are required to satisfy
the conditions of permutation matrix and selection matrix,
respectively, the problem is highly non-convex. Moreover, enu-
merating all L×K! different permutations and combinations
is prohibitively exhausitive. Instead, we resort to enumerate
the optimum permutation for each selected symbol in Dc
and obtain a sub-optimum dictionary Dp. It is worth noting
that the proposed signaling modulation strategy is different
from the waveform shuffling scheme introduced in [36], where
permutation matrix Q only is utilized for embedding commu-
nication symbols and symbol detection is accomplished by a
complicated minimization problem in terms of the permutation
matrix.

V. REGULARIZED SELECTION BASED SIGNALING
STRATEGY FOR DFRC SYSTEMS

The two aforementioned signaling strategies implement an
unrestricted antenna selection, that is an arbitrary K-antenna
sparse array might be selected for waveform transmitting
according to the embedded symbols. As there are only K RF
front-ends installed in the platform, antenna selection network
is required to be capable of connecting an arbitrary subset of
K antennas with front-ends. This may put a high pressure on
the hardware realization especially when the selected antennas
locate far from the front-ends. In order to preserve original
radar functions, the MIMO radar receiver is assumed to know
the association of the orthogonal waveforms to the transmit
antennas for the hybrid selection and permutation scheme. The
complete transparency between the two functions may cause
practical implementation issues as well. To counteract these
implementation issues, we propose a regularized selection
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based signaling strategy to embed communication symbols
into the transmit array configuration in the following.

Binary Data

Antenna Selection Network0  0  1  1

...

S1 S2 S3 S4 S5 S6 S7 S8

Front-end

Excitation

1( )t
2 ( )t

( )M t

Fig. 2. Illustration of regularized antenna selection based modulation
signaling scheme.

The concept of the proposed signaling scheme is shown
in Fig. 2. There are M = 2K uniformly spaced transmit
antennas with an inter-element spacing of d. The M antennas
are divided into K subgroups with each subgroup consisting
of two adjacent antennas. Each subgroup represents one-
bit symbol, where the symbol “0” implies the first antenna
selected and the second antenna discarded, and vice versa
for the symbol “1”. The restriction of only one selected
antenna for each subgroup can guarantee a constant number
of K transmit antennas. Let Ψk(t),m = 1, . . . ,K be K
orthogonal waveforms corresponding to the K subgroups of
antennas. The antenna selection matrix in Eq. (7) becomes
P(τ) ∈ {0, 1}K×2K , which is a rectangular diagonal selection
matrix with a K-bit message matrix E ∈ {0, 1}2×K populating
along the diagonal. Each row ek, k = 1, . . . ,K of the message
matrix E is defined as follows:

ek =

{
[1, 0] if the kth message bit is bk = 0,

[0, 1] if the kth message bit is bk = 1.
(39)

In order to decouple the dependency of communication perfor-
mance on the arrival angle θc, a set of phase rotations can be
pre-multiplied with orthogonal waveforms before transmitting.
As proved in section III-C, the phase-rotated waveforms are
capable of preserving the orthogonality, and do not affect
the normal radar operations. To approach the performance
of BPSK scheme, the additional phase rotations ϕk, k =
1, . . . ,K are calculated as,

ϕk =

{
−(2k − 2)k0d sin θc if bk = 0,

π − (2k − 1)k0d sin θc if bk = 1.
(40)

Denoting the phase rotation vector as u = [ejϕ1 , . . . , ejϕK ]T ,
the received communication signal is

xc(t, τ) = αchaT (θc)PT (τ)diag(u)Ψ(t) + nc(t, τ), (41)

Matched filtering the received data with the kth waveform
yields,

yc,k(τ) =

∫
T

xc(t, τ)Ψk(t)dt, (42)

= αche
jϕk [a2k−1(θc)(1− bk) + a2k(θc)bk]

+nc,k(τ), k = 1, . . . ,K,

Then, each message bit can be deciphered from the phase of
the received signal, that is

φ̂k(τ) = angle{yc,k(τ)} − angle{αch}, (43)

≈

{
0 if bk = 1,

π if bk = 0,

where angle(·) stands for the angle of a complex number. As
the number of embedded bits during each radar pulse equals
to the number K of selected antennas, the data rate in bps can
be expressed as,

R = K × fPRF, (44)

The bit error rate for the proposed regularized selection
strategy is the same as that of BPSK, that is

BERr = Q(ρ, 1). (45)

As the correct detection of the K-bit communication symbol
requires the accurate estimate of each bit, the symbol error rate
of the regularized antenna selection scheme can be expressed
in terms of the bit error rate,

SERr = 1− (1−Q(ρ, 1))K . (46)

Note that there are totally 2K symbols in the dictionary for the
regularized selection based signaling scheme and no symbol
subset selection is further required. The pair of symbols with
the minimum distance is obtained by switching one antenna to
the other in one subgroup with maintaining others unchanged
and those with the maximum distance is obtained by switching
on/off the antennas in all K subgroups. It is worth noting that
the association between antennas and orthogonal waveforms
is fixed during the entire process and the assumption of
communication operation transparency is no more necessary
to MIMO radar.

VI. SIMULATIONS

In our simulations we consider a radar with M = 16
antennas arranged in a ULA with an inter-element spacing
of 0.25 wavelength. Throughout the simulations, we assume
a number of K = 8 antennas are selected during each PRI
to simultaneously embed one communication symbol while
performing the radar operation. The radar receiver array is
a 10-antenna ULA. Unless otherwise stated, we evaluate the
performance of the system by showing the symbol error rate
as a function of SNR.

A. Example 1: Antenna Selection based signaling Scheme

In the first example, we assume that the main radar operation
takes place within the angular sector Θ = [−10◦, 10◦]. A
single communication receiver is assumed to locate at the
direction of θc = 14.4775◦. In this case, the total number
of unique subarray configurations which can be obtained by
antenna selection equals C8

16 = 12870. We embed one com-
munication symbol per PRI. The highest number of bits per
symbol is blog2(C8

16)c = 13. Here, we consider the cases of 1,
2, 4, and 8 bits per symbol which can be achieved by building
four dictionaries of 2, 4, 16, and 256 subarrays, respectively.



9

-80 -60 -40 -20 0 20 40 60 80
Angle (Degrees)

-40

-35

-30

-25

-20

-15

-10

-5

0

T
ra

ns
m

it 
P

ow
er

 D
is

tr
ib

ut
io

n 
P

at
te

rn
 (

dB
)

Fig. 3. Overall power patterns of all the 8-antenna sparse arrays in the
dictionary Dr .

Symbol subset selection of the 256 configurations, drawn from
the total 12870 available combinations, is performed offline for
two scenarios. In the first scenario, the radar operation was
given the priority by enforcing the selected sparse arrays to
have the smallest peak ripples within the main radar beam. We
refer to this set of configurations as Dr. The power patterns
of different sparse arrays in the dictionary Dr are almost the
same with a small mainlobe ripple, as shown in Fig. 3. In
the second scenario, we select the sparse arrays such that the
Euclidean distance between different symbols in the dictionary
is maximized. We refer to this set of configurations as Dc. A
peak sidelobe level of −20 dB is required in both scenarios.
Unfortunately, the larger Euclidean distance between different
symbols comes at the price of having larger difference between
the corresponding beampatterns as shown in Fig. 4. For small
dictionary size, the individual beampatterns have almost the
same mainbeam level as the nominal value. However, as the
dictionary size increases, some of the individual beampatterns
exhibit noticeable deviation from the nominal beampattern
within the mainbeam. This may cause some loss in radar
performance which is the price paid for having an improved
communication detection performance.

To test the communication performance and show the trade-
off between the communications and the radar beampattern re-
quirements, a number of 107 symbols are randomly generated.
Information embedding is performed using the dictionaries
Dr and Dc, which emphasize the radar requirement and the
communication performance, respectively. Figure 5 shows the
SER versus SNR for various numbers of bits per symbol
using the constellations drawn from Dr. The figure shows
that the SER curves exhibit the expected standard behavior
of a communication system, with the SER increasing with
decreasing SNR and with increasing number of bits per
symbol. At high SNR values, a SER smaller than 10−5 can
be achieved for all cases considered. The figure shows that for
a fixed SNR the use of a dictionary of smaller size results in
lower SER and vice versa. At low SNR values where noise is
dominant, the communication receiver detects each symbol in
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Fig. 4. Overall power patterns of all the 8-antenna sparse arrays in the
dictionary Dc.
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Fig. 5. SER versus SNR in the case where the communication receiver is
at direction θc = 14.4775◦; The dictionary Dr is selected in favor of radar
operation.

the dictionary with equal probability. For example, the SER is
approximately 0.5 at the SNR of −20 dB in the case of 1 bit
per symbol, that is the probability of detecting the symbol
correctly equals the probability of detecting it erroneously.
Figure 6 shows the SER versus SNR for various numbers
of bits per symbol in the scenario where the dictionary Dc
is used. The figure shows that the SER curves exhibit better
SER performance as compared to that of the first scenario.
This can be attributed to the fact that the dictionary Dc is
designed to enhance the communication performance.

B. Example 2: Hybrid Selection and Permutation based sig-
naling Scheme

We proceed to investigate the hybrid selection and permu-
tation based signaling scheme in this example. For the dic-
tionary Dc constructed based on the metric of communication
performance, we enumerate all potential permutations of each
symbol such that the distance between arbitrary two symbols
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Fig. 6. SER versus SNR in the case where the communication receiver
is at direction θc = 14.4775◦; The dictionary Dc is selected in favor of
communications at the price of increased mainlobe ripples.

in the dictionary is further maximized. The new dictionary is
denoted as Dp. We can calculate the minimum and maximum
distances between the kth symbol and the remaining 255
symbols as follows,

dkmin =


min

{
‖ãk − ãi‖2, i = 1, . . . , k − 1, k + 1, . . . , 256

}
,

for Dc,Dr;
min

{
‖āk − āi‖2, i = 1, . . . , k − 1, k + 1, . . . , 256

}
,

for Dp;

and

dkmax =


max

{
‖ãk − ãi‖2, i = 1, . . . , k − 1, k + 1, . . . , 256

}
,

for Dc,Dr;
max

{
‖āk − āi‖2, i = 1, . . . , k − 1, k + 1, . . . , 256

}
,

for Dp;

The maximum and minimum distances of the constructed
three dictionaries Dr,Dc,Dp are plotted in Figs. 7 and 8 for
comparison. Clearly, the minimum distance of the dictionary
Dp after antenna permutation is much larger than those of the
two dictionaries, which directly determines the communication
accuracy.

To test the communication performance, a number of 107

symbols are randomly generated. Figure 9 shows the SER
versus SNR for various numbers of bits per symbol. We embed
one communication symbol per PRI. The highest number of
bits per symbol is blog2(C8

16× 8!)c = 28. Similar to Example
1, we consider the cases of 1, 2, 4, and 8 bits per symbol,
respectively. We can see that the communication performance
is significantly improved especially for the case of 8 bits per
symbol.

C. Example 3: Regularized Selection based signaling Scheme

We continue to investigate the regularized selection based
signaling scheme. The 16-antenna ULA is divided into 8
subgroups and each subgroup consists of two antennas. During
each radar pulse, one out of two antennas in each subgroup are
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Fig. 7. Maximum distance dkmax between the kth symbol and any other
symbol in the dictionaries.

0 50 100 150 200 250
−1

0

1

2

3

4

5

6

7

8

9

10

symbol

m
in

im
um

 d
is

ta
nc

e 
d m

in

 

 

Dictionary Dr in favor of radar

Dictionary Dp after permutation

Dictionary Dr in favor of communications

regularized selection

Fig. 8. Minimum distance dkmin between the kth symbol and any other symbol
in the dictionaries.

switched on according to the communication symbol. There
are totally 28 = 256 symbols and no symbol subset selection
is required. The maximum distance is 32, which is obtained by
changing the statuses of all 8 subgroups, as shown in Fig. 7.
The minimum distance is 4, which is achieved by changing
the antenna status of one subgroup and maintaining the other
subgroups unchanged, as shown in Fig. 8. The power patterns
of the 256 sparse arrays are depicted in Fig. 10, although
worse than those of the dictionary Dr constructed in favor of
radar functions, but much better than those of the dictionary
Dc constructed in favor of communication function.

To test the communication performance, we consider the
cases of 1, 2, 4, and 8 bits per symbol respectively. For the
case of 1 bits per symbol, all the 8 subgroups transmit the
same bit information. For the case of 2 bits per symbol, the first
four subgroups transmit the first bit and the last four subgroups
transmit the second bit. For the case of 4 bits per symbol, each
two adjacent subgroups transmit one bit information. For the
case of 8 bits per symbol, every subgroup transmits one bit.
The SER curve versus the SNR is plotted in Fig. 11. Although
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Fig. 9. SER versus SNR in the case where the communication receiver
is at direction θc = 14.4775◦; The dictionary Dp is obtained by applying
permutation to the dictionary Dc to increase the distance between arbitrary
two symbols.
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Fig. 10. Power patterns of the 256 different 8-antenna sparse arrays in the
regularized selection scheme.

the communication performance is inferior to that of the hybrid
selection strategy, it is much better than those of the antenna-
selection scheme with both constellations Dr and Dc.

Finally, we compare the robustness against the estimation
error of communication receiver angle between the hybrid
scheme and the regularized selection scheme. Assume that
the true angle of the communication receiver is normally
distributed with mean θc = 14.4775◦ and standard variance
σ. The dual-function platform transmits the communication
symbol towards the assumed angle θc = 14.4775◦ and
calculates the phase rotation of each antenna according to
that assumed angle. The communication receiver detects the
symbol based on the dictionary constructed with the assumed
angle. The estimation standard variance σ is changing from
1 to 5 in steps of 1 and 500 Monte Carlo simulations are
executed for each value. The SER curve versus the standard
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Fig. 11. SER versus SNR for the case where the communication receiver is
at direction θc = 14.4775◦ using the regularized selection scheme.
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Fig. 12. SER versus the standard variance of communication angle estima-
tion, the communication receiver is assumed at direction θc = 14.4775◦, the
actual angle is normally distributed around θc with variance σ.

variance is plotted in Fig. 12 in four cases of 1, 2, 4, and 8 bits
per symbol, respectively. We can observe that the regularized
selection scheme is more robust against the communication
angle estimation error than the hybrid scheme.

VII. CONCLUSIONS

In this paper, we investigated the deployment of sparse
arrays by antenna selection for the design of dual functional
MIMO radar communications systems. We proposed three
new techniques, namely antenna selection, hybrid selection
and permutation, and regularized selection based signaling
schemes, utilizing transmit array configurations in tandem
with waveform diversity for communication information em-
bedding. The strategy of hybrid selection and permutation
was able of achieving a megabits high data rate with low
symbol error rate. The regularized selection scheme was
proposed from the viewpoint of practical implementation and
exhibited the best robustness against the estimation error of
communication receiver angle. Simulation results validated
the successful deployment of sparse arrays in dual functional
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MIMO radar communications systems for communication
performance enhancement without impacting primary radar
functions.
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