
Optimum Adaptive Beamformer Design with

Controlled Quiescent Pattern by Antenna Selection

Xiangrong Wang⋆, Moeness G. Amin† and Xianbin Cao⋆

⋆School of Electronic and Information Engineering, Beihang University, Beijing, China, 100191.
†Center for Advanced Communications, Villanova University, PA 19085, USA.

Email: xrwang@buaa.edu.cn, moeness.amin@villanova.edu, xbcao@buaa.edu.cn.

Abstract—In this paper, we consider the design of optimum
sparse adaptive beamformer with controlled quiescent beampat-
tern for multiple sources in interference-free environment. The
two measures of the maximum output signal-to-noise ratio (SNR)
and approximately equal gains towards all sources incident on
the array are applied for optimality. We combine both adaptive
and deterministic approaches to sparse array design to offer the
most general design metric for beamformers. We propose an
iterative linear fractional programming method to solve the non-
convex antenna selection problem associated with the proposed
metric. Simulation examples confirm that the array configuration
plays a vital role in determining the beamforming performance
in interference-free scenarios.

Index Terms—output SNR, quiescent pattern, linear fractional
programming, sidelobe level

I. INTRODUCTION

Adaptive antenna arrays have long been an attractive so-

lution for statistical inference tasks, such as detection and

estimation, which arise in many applications, including radar,

sonar, communication and satellite navigation [1]–[3]. Antenna

arrays are capable of spatial filtering to extract the desired sig-

nals while filtering out the unwanted interferences. However,

this capability is dependent on the array configuration [4].

With the same number of antennas, different array structures

yield different signal to noise ratio (SNR), as well as signal

to interference plus noise ratios (SINRs), giving importance

to optimum sparse array design. There are many structured

sparse arrays wihch have been devised in the literature [5], [6].

These arrays have a primary aim of being able to deal with

more sources then physical sensors, but have not been shown

to be optimum in SNR or SINR. To achieve optitum array

performance, no preset array structure should be enforced,

except possibly defining the permissible positions of the

sensors in both one and two-dimensional configurations which

is equivalent to performing sensor selections.

The effect of unstructured array configurations on inter-

ference nulling performance in the case of a single desired

source was investigated in our previous work [7], [8]. More

recently, the problem of optimum array reconfiguration and

antenna selections in the case of multiple desired sources

in interference-free environment without applying quiescent

pattern constraints was considered in [9]. In this paper, we

consider optimum receiver beamformer design with sidelobe
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constraints in the general case where the dimension of the

desired signal subspace is arbitrary and not necessarily con-

fined to a unit value. This case is encountered when multiple

communication emitters are present in the field of view, and

also occurs in radar tracking of multiple targets. With multiple

source signals impinging on the receiver, the optimum weight

which provides the maximum output SNR is the principal

eigenvector of the source covariance matrix [10]. Clearly,

the optimum weight does not guarantee equal gains towards

all sources, which may result in performance loss when all

sources are identically weak and equally important. Thus, it

becomes necessary to investigate the optimum sparse array

configuration that maximizes the output SNR while providing

equal sensitivities towards all sources.

Sparse array design can be carried out within two frame-

works, namely, the deterministic beampattern synthesis and

the environment-dependent beamforming. The former focuses

on the design of optimum sparse arrays which result in

beampatterns with prescribed mainlobe width and reduced

sidelobe levels [11], whereas the latter is adaptive and focuses

on the sources and noise at hand [12]. Although superior

to deterministic design, high sidelobe levels may constitute

a potential problem in adaptive beamformer design. This

problem becomes more pronounced when directional inter-

ferers are suddenly switched on [13]–[15]. In this case, new

weights and array structure must be recomputed/reconfigured

to respond to the new environment which requires a finite

amount of response time. This mandates selections of sensor

positions and calculations of associated weights according to

desirable constraints on the beamformer sidelobes. As such,

an optimization metric combining adaptive beamforming and

constraint-based deterministic array design should seek the

sparse array configuration that maximizes the output SNR with

well-controlled sidelobes. This constitutes the main novelty

and focus of this paper. We formulate, analyze, and configure

the two optimum adaptive arrays which provide the maximum

SNR and equal gains towards all potential incoming sources

with controlled sidelobe levels. An iterative linear fractional

programming method is proposed to solve the antenna selec-

tion problem.

The rest of this paper is organized as follows: We in-

troduce the problem in section II. Formulation of adaptive

beamformer design with and without controlled quiescent

pattern constraints is elucidated in section III. The problem of

deterministic beamformer design is reformulated in section IV,



circumventing the assumption of symmetric arrays. Simulation

results, presented in section V, validate the effectiveness of

proposed methods. Finally, concluding remarks are provided

in section VI.

II. PROBLEM FORMULATION

The problem formulation is similar to that of reference [9].

Consider a linear array of K isotropic antennas with positions

specified by multiple integer of unit inter-element spacing

xnd, xn ∈ N, n = 1, · · · ,K . Suppose that p source signals

are impinging on the array from directions {θ1, · · · , θp} with

spatial steering vectors specified by,

uk = [ejk0x1d cos θk , · · · , ejk0xNd cos θk ]T , k = 1, · · · , p, (1)

respectively. The wavenumber is defined as k0 = 2π/λ with λ
being the wavelength and T denotes transpose operation. The

received signal at time instant t is given by,

x(t) = Us(t) + n(t), (2)

where U = [u1, · · · , up] ∈ CK×p is the source array manifold

matrix. In the above equation, s(t) ∈ Cp denotes the source

vector and n(t) ∈ CK represents the received noise vector.

The output of the K-antenna beamformer is given by,

y(t) = wHx(t), (3)

where w ∈ CK is the complex vector of beamformer weights

and H stands for Hermitian operation. With additive Gaussian

noise, i.e. n(t) ∼ CN (0, σ2
nI) with σ2

n denoting noise power

level, and in the absence of interfering sources, the optimal

weight vector for maximizing the output SNR is given by,

wopt = P{Rs} = P{UCsUH}. (4)

where P{·} denotes the principal eigenvector of the matrix,

Rs is defined as Rs = UCsUH with Cs = E{s(t)sH(t)}
denoting source auto-correlation matrix. The output SNR is,

SNRopt =
wH

optRswopt

wH
optRnwopt

=
λmax{Rs}

σ2
n

=
‖Rs‖2
σ2
n

. (5)

Clearly, array configuration affects output SNR of the optimum

beamformer wopt through the term of ‖Rs‖2 from Eq. (5) [9].

III. ADAPTIVE BEAMFORMER DESIGN

Suppose that there are N grid points for possible sensor

positions and K available antennas for placement. Denote

an antenna selection vector z ∈ {0, 1}N with “zero” entry

denoting the corresponding antenna discarded and “one” entry

for a selected antenna. As steering vectors are directional, the

implementation of antenna selection is clearly expressed as

ui(z) = ui ⊙ z, i = 1, . . . , p with ⊙ denoting element-wise

product and, accordingly, U(z) = [u1(z), . . . , up(z)]. Ideally,

the adaptive beamformer should be reconfigured through an-

tenna selection z such that the spectral norm of the reduced-

dimensional source covariance matrix ‖Rs(z)‖2 is maximum.

That is,

max
z

‖U(z)CsUH(z)‖2, (6)

subject to z ∈ {0, 1}N ,

1T z = K.

However, the spectral norm of a matrix is convex and it is a dif-

ficult problem to maximize a convex objective function. More-

over, it is computationally prohibitive to implement eigenvalue

decomposition for each subset of K sensor locations, even for

a small-scaled problem. Thus, we resort to convex relaxation,

that is, maximizing the lower bound of the spectral norm of

source covariance matrix.

A. Adaptive Beamformer Design Without Sidelobe Constraints

Proceeding from the definition of the spectral norm of the

source covariance matrix, we obtain its lower bound [16], i.e.,

‖U(z)CsUH(z)‖2 (7)

= max
‖b‖2=1

bHU(z)CsUH(z)b,

≥ ẽ
H
1 U(z)CsUH(z)ẽ1, ∀ẽ1, ‖ẽ1‖2 = 1.

Assume that the source auto-correlation matrix Cs is known a

priori or previously estimated. Then, the principal eigenvector

of the array with fully populated grid of N sensors, (z = 1),

can be calculated through eigenvalue decomposition of Rs,

UCsUH = EΛEH , (8)

where Λ = diag(λ1, . . . , λp, 0, . . . , 0) with the N eigenvalues

populating along its diagonal in a descending order λ1 ≥ . . . ≥
λp and ei, i = 1, . . . , N are corresponding eigenvectors. The

source covariance matrix, upon implementing sensor selection,

can be written as,

U(z)CsUH(z) = E(z)ΛEH(z). (9)

Clearly, the set of vectors E(z) = [e1(z), . . . , ep(z)] consti-

tutes a set of redundant basis of the K-dimensional source

subspace, as λp+1 = . . . = λN = 0. Furthermore, the vector

e1(z) = e1 ⊙ z still possesses the largest coefficient λ1, and,

as such, e1(z)/‖e1(z)‖2 can be utilized to closely approximate

the principal eigenvector of the selected sparse array, i.e.,

‖U(z)CsUH(z)‖2 ≥
eH1 (z)U(z)CsUH(z)e1(z)

‖e1(z)‖22
. (10)

Therefore, the optimum adaptive beamformer for maximizing

the output SNR can be relaxed as [9],

max
z

eH1 (z)U(z)CsUH(z)e1(z)

‖e1(z)‖22
, (11)

subject to z ∈ {0, 1}N , 1T z = K.

The optimum adaptive beamformer in Eq. (4) provides the

maximum output SNR, but cannot guarantee equal sensitivities

towards all sources. A large difference in array sensitivities

towards the users may not be desirable in practice, specifically

when all sources must be equally served by the receiver. If a

specific gain toward each source is required, for example equal

gains, then the beamformer weights can be set to,

w = Uβ, (12)

where β denotes the desired gain vector towards all sources.

Note that the beamformer in Eq. (12) with β = 1 does not

imply exact equal sensitivities due to the spatial correlation



among the sources translating into sidelobes. However, if exact

gain values are enforced, then we, in essence, consume p
degrees of freedom (DoF) with little or no DoF left for SNR

considerations. The corresponding sensor selection problem

can be formulated as,

max
z

βHUH(z)U(z)CsUH(z)U(z)β

βHUH(z)U(z)β
, (13)

subject to z ∈ {0, 1}N , 1T z = K.

Note that the construction of optimum adaptive beamformers

comprises two intertwined steps, sensor management through

antenna selection z and optimum weight calculations, either by

Eq. (4) or Eq. (12) according to the underlying applications.

B. Adaptive Beamformer with Controlled Quiescent Pattern

We combine the adaptive and deterministic approaches to

offer the most general metric for beamformer design. Specific

sidelobe levels can be provided to shape the array response

prior to the onset of any directional interference. In this case,

the optimization problem becomes more involved due to the

additional sidelobe controlling constraints.

Denote the sidelobe angular region as Ω and sample Ω
with a set of predefined discrete angles {θs1, . . . , θsL}. Their

respective steering vectors of the fully populated array are

denoted as ai, i = 1, . . . , L and A = [a1, . . . , aL]. The basic

model is to find an optimum sparse array with the maximum

output SNR while maintaining low sidelobe levels over the

specified region Ω. Denote the required peak sidelobe level

(PSL) as γ. We impose the following L quadratic constraints

on the sparse array design for maximum output SNR and

equal-gain beamformers,

eH1 (z)ai(z)a
H
i (z)e1(z) ≤ γeH1 (z)e1(z), (14)

and

βHUH(z)ai(z)a
H
i (z)U(z)β ≤ γβHUH(z)U(z)β, (15)

respectively, where i = 1, . . . , L. The choice of L is a

trade-off between generating well-shaped quiescent pattern

and maximizing the output SNR. As the number L is increased

for deterministic constraints, the number of DoFs available for

adaptive design is reduced.

The adaptive beamformer design for maximizing the output

SNR with controlled sidelobe level is expressed as,

max
z

eH1 (z)U(z)CsUH(z)e1(z)

‖e1(z)‖22
, (16)

subject to eH1 (z)ai(z)a
H
i (z)e1(z) ≤ γeH1 (z)e1(z),

i = 1, . . . , L

z ∈ {0, 1}N , 1T z = K.

Define the vectors ē1 = e∗1 ⊙ e1, āi = e∗1 ⊙ ai, i = 1, . . . , L
and the matrix Ū = [e∗1⊙u1, . . . , e∗1 ⊙up] with ∗ denoting the

conjugate operation. The problem in Eq. (16) can be rewritten

as,

max
z

zHŪCsŪ
H

z

zH ē1
, (17)

subject to zH āiā
H
i z ≤ γzH ē1, i = 1, . . . , L

0 ≤ z ≤ 1, 1T z = K.

As every sublevel set Sν ,

Sν = {z|
zHŪCsŪ

H
z

zH ē1
≤ ν}, (18)

for arbitrary ν, is convex, the objective in Eq. (17) is quasi-

convex [17]. We relax the binary constraints z ∈ {0, 1}N to a

box constraint 0 ≤ z ≤ 1, as the global maximizer of a quasi-

convex function locates at the extreme points of the polyhedral

[18], [19], which, in turn, eliminates the notorious binary

constraints. The problem represented by Eq. (17) is a quadratic

fractional, which can be transformed into linear fractional

programming iteratively. The problem in the (k+1)th iteration

based on the kth solution z(k) is written as,

max
z

2z(k)HŪCsŪ
H

z − z(k)HŪCsŪ
H

z(k)

zH ē1
, (19)

subject to (2z(k)H āiā
H
i − γēH1 )z − z(k)H āiā

H
i z(k) ≤ 0,

i = 1, . . . , L,

0 ≤ z ≤ 1, 1T z = K.

The linear fractional programming in Eq. (19) can be further

transformed into linear programming as follows,

max
y,α

2z(k)HŪCsŪ
H

y − z(k)H ŪCsŪ
H

z(k)α, (20)

subject to (2z(k)H āiā
H
i − γēH1 )y − z(k)H āiā

H
i z(k)α ≤ 0,

i = 1, . . . , L,

1T y = Kα, 0 ≤ y ≤ α,

α > 0, ēH1 y = 1.

The optimum selection vector is finally obtained by z = y/α.

Similarly, the design of adaptive beamformer with approxi-

mately equal sensitivities towards all sources and controlled

sidelobe level is formulated as,

max
z

βHUH(z)U(z)CsUH(z)U(z)β

βHUH(z)U(z)β
, (21)

subject to βHUH(z)ai(z)a
H
i (z)U(z)β ≤ γβHUH(z)U(z)β,

i = 1, . . . , L,

z ∈ {0, 1}N , 1T z = K.

Utilizing the following property of Khatri-Rao product ◦,

Adiag(x)b = (bT ◦ A)x, (22)

we obtain

UH(z)U(z)β = UHdiag(z)Uβ = [(Uβ)T ◦ UH ]z, (23)

and

aHi (z)U(z)β = aHi diag(z)Uβ = [(Uβ)T ◦ aH
i ]z, . (24)



Define the vector β̄ = (Uβ) ⊙ (Uβ)∗, the matrices ¯̄U =
(Uβ)T ◦ UH and ¯̄ai = (Uβ)T ◦ aHi . The problem in Eq. (21)

can be rewritten as

max
z

zT ¯̄UHCs
¯̄Uz

zT β̄
(25)

subject to zT ¯̄ai¯̄a
H
i z ≤ γβ̄T z,

0 ≤ z ≤ 1, 1T z = K.

Clearly, the formulation in Eq. (25) also belongs to quadratic

fractional programming. The iterative linear fractional pro-

gramming introduced above can then be utilized to obtain

the optimal beamformer with approximately equal sensitivities

towards all sources and controlled quiescent pattern.

IV. DETERMINISTIC BEAMFORMER DESIGN

The deterministic beamformer design prescribes mainlobe

width and reduced sidelobe levels. The N -dimensional weight

vector w for deterministic array design is required to be

sparse with cardinality of K . Although this problem has

been intensively investigated in the literature [20]–[22], the

assumption of symmetric arrays is not required in this work

and an effective algorithm is proposed to solve the general

design problem. The deterministic array design is formulated

as,

min
w

‖w‖1, (26)

subject to wHuiu
H
i w ≤ 1 + δ, i = 1, . . . , p,

wHuiu
H
i w ≥ 1− δ, i = 1, . . . , p,

wHaia
H
i w ≤ γ, i = 1, . . . , L, (27)

where δ represents the acceptable mainlobe ripple. We split the

N × 1 weight variable into real and imaginary parts and stack

them as a 2N × 1 vector, i.e., w̃ = [R(w)T , I(w)T ]T . Then,

the problem of deterministic array design can be transformed

from the complex domain to the real domain, i.e.,

min
w

‖w̃‖2,1, (28a)

s.t. w̃
H

Uiw̃ ≤ 1 + δ, i = 1, . . . , p, (28b)

w̃HUiw̃ ≥ 1− δ, i = 1, . . . , p, (28c)

w̃
H

Aiw̃ ≤ γ, i = 1, . . . , L (28d)

where the matrices Ui and Ak are defined as,

Ui =

[

R(uiu
H
i ) −I(uiu

H
i )

I(uiu
H
i ) R(uiu

H
i )

]

, i = 1, . . . , p (29)

and

Ak =

[

R(aia
H
i ) −I(aia

H
i )

I(aia
H
i ) R(aia

H
i )

]

, k = 1, . . . , L (30)

respectively. Moreover, the term ‖w̃‖2,1 is utilized to promote

the group sparsity and defined as,

‖w̃‖2,1 =
N
∑

i=1

√

R(wi)2 + I(wi)2. (31)

Note that the lower bound constraint imposed on the mainlobe

in Eq. (28c) is not convex and we approximate it iteratively

using its global affine underestimate. Moreover, the group

sparsity in Eq. (31) can be achieved through the Second-Order

Cone Programming (SOCP) [23]. The k+1th iteration of the

problem based on the kth solution w̃
(k)

is written as,

min
w,t

1T t, (32)

subject to 2w̃
kH

Uiw̃ − w̃
kH

Uiw̃
k ≤ 1 + δ, i = 1, . . . , p,

2w̃
kH

Uiw̃ − w̃
kH

Uiw̃
k ≥ 1− δ, i = 1, . . . , p,

w̃
H

Aiw̃ ≤ γ, i = 1, . . . , L

w̃
2
i + w̃

2
i+N ≤ ti, i = 1, . . . , N.

The optimum deterministic array can be obtained from the sup-

port of the K largest weights wi = w̃i+jw̃i+N , i = 1, . . . , N .

V. SIMULATIONS

In this section, simulation results are presented to validate

the proposed antenna selection methods. Consider K = 8
available antennas and N = 16 uniformly spaced positions

with inter-element spacing of d = λ/2. There are three

uncorrelated source signals impinging on the array from

directions θ1 = 65◦, θ2 = 75◦, θ3 = 110◦ with SNR

being 6dB, 3dB and 0dB, respectively. In order to validate

the important role of array configurations in determining the

adaptive processing performance, that is, the output SNR and

beampattern response, we enumerate all 12870 different sparse

arrays. Basically, we implement the beamformer in Eq. (4)

for each array to calculate the output SNR and peak sidelobe

level (PSL), which are presented in Figs. 1 and 2 sorted in

an ascending order according to the output SNR. We can

make the following observations: (1) For the same beamformer

and number of antennas, different array configurations yield

different output SNR and beampattern response; (2) The SNR

difference between the optimum and worst arrays is 1.45dB.

The beampattern of the sparse array with the maximum output

SNR exhibits as high as -2.5dB sidelobe level. In terms of the

beampattern response, the worst sparse array generates grating

lobes, as indicated by the circle in Fig. 2, whereas the best

sparse array, shown by square in Fig. 2, can achieve as low

as -8.4dB PSL. Combining the two figures, Figs. 1 and 2, it

is clear that the optimum sparse array design for quiescent

beamforming should put the two metrics, output SNR and

beampattern response, into consideration.

We then calculate the optimum 8-antenna sparse array

adaptive beamformers in terms of the maximum output SNR

with and without controlled sidelobes, utilizing the proposed

ILFP algorithm. Note that the ILFP algorithm can obtain the

true optimum sparse array without considering the sidelobe

constraints as well as the array of a well-shaped quiescent

pattern with an acceptable SNR degradation. The two sparse

arrays are referred to array (a) and (b) respectively, whereas

the sparse array with the lowest PSL is termed array (c).

The configurations of the three arrays are depicted in Fig.

3. The respective beampatterns are depicted in Fig. 4. The

PSL and output SNRs are listed in the first three rows of

Table I. Clearly, array (a) exhibits the highest sidelobes and

undesirably low gain towards the third weak source. The

sparse array (c) demonstrates the best-shaped beampattern

with 15.8dB output SNR. Array (b) circumvents the high
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Fig. 2. Peak sidelobe level of all 8-antenna sparse arrays sorted in an
ascending order corresponding to the output SNR.

sidelobes in the angular region around the three sources and

improves the output SNR to 16dB as well. Thus, array (b)

is a reasonable compromise between arrays (a) and (c). Note

that the beamforming weights for the three sparse arrays are

calculated according to Eq. (4). This validates that array con-

figurations impact the beamforming performance dramatically.

Next, we implement antenna selection to obtain optimum

sparse array equal-gain beamformers with and without con-

trolled sidelobes using the same simulation scenario as above.

The two selected sparse arrays, namely array (d) and (e), are

plotted in Fig. 5. We also depict their respective beampatterns

in Fig. 6 using the weight vector w = Uβ with β = [1, 1, 1]T .

The PSL and output SNRs of the two arrays are summarized

in the fourth and fifth rows of Table I. We can observe that

array configurations also significantly affect the performance

of the equal-gain beamformer. By comparing Figs. 4 and 6, it

is clear that the beamformer in Eq. (4) ignores the weak source

in order to maximize the output SNR. This disadvantage

is overcome by the equal-gain beamformer in Eq. (12), as

demonstrated in Fig. 6. However, the sacrifice made is the

output SNR degradation, which are 15.5dB and 15.2dB for
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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The sparse array (c) with lowest PSL

Fig. 3. Optimum 8-antenna sparse arrays in terms of the maximum output
SNR beamformer: array (a) without sidelobe constraints, array (b) with
controlled sidelobes, array (c) with lowest PSL. The filled dots imply placed
antennas and cross the discarded positions.
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Fig. 4. Beampatterns of three sparse arrays (a), (b) and (c).

the sparse array (d) and (e), respectively. Moreover, array

(e) exhibits -6.6dB PSL, compared with -2.9dB of array (d),

manifesting a good compromise.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The sparse array (d) with maximum SNR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The compromise array (e) between SNR and SPL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The deterministic array (f)

Fig. 5. Selected optimum adaptive and deterministic beamformers with equal
sensitivity towards each source: array (c) without sidelobe constraints, array
(d) with controlled sidelobes; array (e) deterministic 12-antenna array.

In order to compare the adaptive beamformer design with

deterministic array synthesis, we implement the array thinning
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TABLE I
THE OUTPUT SNR AND PSL OF EACH ARRAY.

Array Name SNR (dB) PSL (dB)

Array (a) 16.5 -2.5

Array (b) 16 -5.3

Array (c) 15.8 -8.73

Array (d) 15.5 -2.9

Array (e) 15.2 -6.6

Array (f) 14.87 -6.1

according to Eq. (32). The deterministic array (f) is shown at

the bottom of Fig. 5 and the synthesized beampattern is plotted

in red dash-dot curve in Fig. 6, with the weights obtained

from Eq. (32). The PSL and output SNR of the deterministic

array (f) are presented in the last row of Table I. Clearly, the

adaptive array beamformer is superior than the deterministic

one, which yields the lowest output SNR, that is 14.87dB,

although it exhibits well-controlled sidelobe level of −6.1dB,

still higher than that of the array (e).

Finally, we summarize the output SNR and PSL of the six

sparse arrays (a)-(f) in Table I. No doubt that the array (a)

achieves the maximum output SNR, however, it fails to treat

all the sources in the field of view with equal sensitivities

and exhibits poor quiescent pattern as well. Array (c) presents

the best quiescent pattern response with a 0.7dB output SNR

degradation. Array (b) manifests a good compromise between

the output SNR and the beampattern in terms of the maximum

SNR adaptive beamformer. Array (d) is the optimum sparse

array with the maximum output SNR under the constraint of

equal sensitivities towards all the sources. Array (e) overcomes

the disadvantage of high sidelobes of array (d) and a good

compromise among arrays (a)-(d). The deterministic array (f)

demonstrates the worst output SNR, whereas its advantage is

evidently manifested by well-controlled sidelobe levels.

VI. CONCLUSION

We examined the problem of optimum antenna selections

in the case of multiple desired sources in interference-free

environment with and without applying quiescent pattern

constraints. Although superior to deterministic array synthesis,

uncontrolled quiescent pattern raises concern when deploying

the array with possibility of interference suddenly emerging.

We utilized all available degrees of freedom and flexibility in

sensor placements to achieve high SNR and desired beam-

pattern. This was accomplished in both cases of maximum

output SNR and equal gain beamformers. Simulation results

validated the importance of array configurations in determining

the beamforming performance in interference-free scenarios.
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