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Abstract—Falls are the major cause of accidents in the elderly
population. Propelled by their non-intrusive sensing capabilities
and robustness to heat and lighting conditions, radar-based
automated fall detection systems have emerged as a candidate
technology for reliable fall detection in assisted living. The use of
a multiple radar system, in lieu of a single radar unit, for indoor
monitoring combats occlusion and supported by the fact that
motion articulations in the directions away from the line of sight
generate weak Doppler signatures that are difficult to detect and
classify. Fusion of the data from two radars is deemed to improve
performance and reduce false alarms. Utilizing two 24 GHz ultra-
wide band (UWB) radar sensing systems, we present different
fusion architectures and sensor selection methods, demonstrating
the merits of two-sensor platform for indoor motion monitoring
and elderly care applications.

I. INTRODUCTION

Recent studies have shown that people aged 65 and over
represented 14.5% of the total population in 2014 and it
is expected to grow to 21.7% by 2040 [1]. A considerable
number of the elderly choose to exercise self-care within
their homes, most of the time. One out of three elderly over
the age 65 will fall every year which can result in injuries,
reduced quality of life, and sometimes even death. Therefore,
prompt assistance is crucial to reduce complications associated
with a fall. Fall detection systems have been identified as
a major innovation opportunity to improve the quality of
elderly life. The main objective of a fall detection device is,
upon fall, to alert and mobilize the first responders for an
immediate and proper care and preventing long lying periods
on the floor which can lead to hypothermia, dehydration,
bronchopneumonia and pressure sores [2].

Recently, different types of fall detection systems have been
proposed in the literature [3]–[5]. Most of the studies divide
fall detectors into two main categories: wearable and non-
wearable. The wearable devices are inexpensive but they have
some major drawbacks, including the need to remember to
wear them all times, and the push button devices require the
elderly to be conscious after a fall. In this work, we focus on
radar-based fall detection systems which are considered a sub-
class of the non-wearable category. Various studies have shown
that radar systems can be employed for reliable fall detection.
Towards this goal, a plethora of fall motion features extracted
from in single and joint-variable signal representations have
been proposed [6]–[10].

The main challenge to radar fall detection is achieving
low false alarms. One source of false alarms is the possible
confusion of a fall with sitting and other sudden non-rhythmic
motion articulations. The micro-Doppler signatures of sitting
and falling might be similar, and this similarity may vary on
a case-by-case basis. In many cases, the difference between
two signatures in the time-frequency (TF) domain can prove
insignificant, depending on how slow or fast each activity
is. Therefore, range information can be employed in order
to avoid mixing the two resembling motions: falling and
sitting. Unlike falls, sitting has limited range extent which
is determined by the depth of the chair used. Falls, on the
other hand, can extend over a downrange that is approximately
equal to the subject’s height. In order to effectively reduce the
miss-classification and false alarm rates, time-integrated range-
Doppler maps were employed in [11]. The range-Doppler
representation of the received signal combines both effects
of the target velocity and range. Range-Doppler processing
delivers fairly high resolution in both Doppler and range
capable of resolving closely spaced targets with similar ve-
locities. Time-integrated range-Doppler map is constructed by
agglomeration of the consecutive range-Doppler frames. These
maps offer Doppler signature properties while preserving the
range information which is considered key in fall detection.

Target Doppler signature is sensitive to the direction of
motion defined by the aspect angle, which is the angle between
target motion trajectory and the radial path between the radar
and the target [12], [13]. When the aspect angle approaches
90◦, radar signal becomes strongly attenuated. The aspect
angle impacts the quality of the extracted features, and as
such, can impede fall classification. In one specific example,
it is reported that the fall detection performance can drop
approximately to below 50% for target directions with angles
close to 90◦ [14]. For smaller aspect angles, it has been shown
that classification performance will also degrade slightly and
different levels. Multi-sensor approach could potentially over-
come the aspect angle problem by placing the radars so that
there is no blind spot and the target remains visible by one or
the two radars, irrespective of motion orientation. Moreover,
multi-sensor approach helps to resolve multiple targets in
range. In multi-sensor approach, each sensor compliments
less sensitive directions of the other sensors. The work in
[15] proposed a decision fusion methodology based on the
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Choquet integral to combine the partial decision information
acquired from each sensor. The feature level fusion and sensor
selection methods were considered to correctly determine
the fall event in [16]. In this paper, we examine the multi-
sensor fusion methods and focus on three different levels of
architectures: data level, feature level and decision level. In
data level fusion, time-integrated range-Doppler maps acquired
from each sensor, are fused by using simple averaging and
Discrete Wavelet Transform (DWT). In feature level fusion,
features of multiple sensors are simply concatenated together
into a single feature vector. Extracted features should, however,
be detectable in both sensors. In decision level fusion, soft
decision outputs acquired from the k-Nearest Neighbors (kNN)
and Support Vector Machine (SVM) for each sensor are com-
bined using Bayesian fusion. In sensor selection, one sensor
is selected based on the entropy metric which measures the
information content of the time-integrated range-Doppler map.
Upon selection, features are extracted and fall is classified by
utilizing SVM.

The reminder of this paper is organized as follows. In
Section 2, the UWB radar system and data experimental setup
are introduced. In section 3, the feature extraction algorithm is
provided. Different levels of multi-sensor fusion algorithms are
discussed in Section 4. In Section 5, entropy-based sensor se-
lection method is presented. In Section 6, experimental results
for data-level fusion methods are provided and a performance
comparison between single and multi-sensor methods is also
presented. Finally, conclusions are drawn in Section 7.

II. DATA EXPERIMENTAL SETUP

The multi-sensor UWB radar experiments were conducted
in the Radar Imaging Lab. at the Center for Advanced Com-
munications, Villanova University. The UWB system used in

Fig. 1: Example configuration of the experimental setup

the experiments, named SDRKIT 2500B, is developed by
Ancortek, Inc. Operating parameters of the radar system:
transmitting frequency 24 GHz, pulse repetition frequency
(PRF) 1000 Hz, bandwidth 2 GHz which provides 0.075 m
range resolution.

In this work, a radar network which consists of two UWB
radars, placed on an L-shape geometry, is employed for
the demonstration of the proposed multi-sensor fusion and
selection algorithms. Null experiments were first conducted to
investigate the impact of interference between sensors which
helped in properly separating the two radars in the lab. Both
radars are located 92 centimeters above the floor. The first
radar was placed in the front side of the lab whereas the second
radar was positioned at the right side of lab. An example
configuration of the experimental setup is depicted in Fig. 1.
Experiments were performed by 3 human subjects at a range
of 240 centimeters away from both radars. The test subjects
posed heights ranging from 1.75 to 1.76 m, weights ranging
from 88 to 92 kg, and included 3 males. Four different motions
are considered in the experiments: falling, sitting, bending,
and walking. The micro-Doppler signatures, range vs slow
time, and time-integrated range-Doppler maps are depicted in
Fig. 2 for both falling and sitting motions where the aspect
angle is 0 degrees. Motions were performed for 5 different
directions as shown in the Fig. 1. This configuration allows to
record simultaneous data with two angles, the sum of which
is 90 degrees, for each motion direction. Each observation
was recorded several times for a duration of 10 seconds, for
3 subjects, yielding a total of 320 data collections including
all aspect angles from both sensors. Out of this number,
80 experiments corresponded to falling and the remaining
experiments were related to other non-fall motions.

III. FEATURE EXTRACTION

We defined our feature set as the area between the upper
and lower envelope in the time-integrated range-Doppler map.
Time-integrated range-Doppler map is constructed by agglom-
eration of the consecutive range-Doppler frames [11], [17].
Feature extraction approach is designed to take advantage of
the target trajectory information in both range and Doppler.
An energy-based thresholding algorithm is established to de-
termine the outer envelopes (upper and lower) of the time-
integrated range Doppler map from which the enclosed area
feature can be extracted [18]. The feature extraction process
is depicted in Fig. 3. First, the energy corresponding to the
fast time index n is computed as

E(n) =
N∑
k=1

P (n, k), n = 1, 2, ..., R (1)

where k = 1, 2, ..., N are the Doppler indices and P (n, k)
is the time-integrated range-Doppler map. For a selected fast
time index n, the first frequency bin whose corresponding
time-integrated range-Doppler value is greater than or equal to
the product of a pre-determined threshold α and E is obtained.
The pseudocode of the proposed envelope detection algorithm
is provided below.
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(a) (b) (c)

(d) (e) (f)

Fig. 2: Tri-domain representations of falling (a) Micro-Doppler signature (b) Range-slow time (c) Time-integrated range-
Doppler map and tri-domain representations of sitting (d) Micro-Doppler signature (e) Range-slow time (f) Time-integrated
range-Doppler map

The area captured in between the upper envelope fU and the
lower envelope fL can be determined by implementing numer-
ical integration methods, such as trapezoidal rule method [19].
This method approximates the integration over an interval by
breaking it down into trapezoids with more easily computable
areas. First, we determined the areas under the lower envelope
AL and upper envelope AU separately:

AL ≈
R− 1

2R

R∑
n=1

(fL(n) + fL(n+ 1)) (2)

AU ≈
R− 1

2R

R∑
n=1

(fU (n) + fU (n+ 1)) (3)

Then, the area represented by the motion in this joint-variable
domain can be found by subtracting AU from AL and taking
the absolute value of the result.

IV. MULTI SENSOR FUSION

In recent years, multi-sensor fusion has received significant
attention for radar-based automatic target recognition (ATR)
systems. Fusion of data/information could be carried out
on three different levels/architectures of abstraction closely
interrelated with the flow of the classification process: data
level, feature level, and decision level fusion [20].

The selection among these architectures is application spe-
cific and several considerations have to be made before im-
plementing the fusion methods, such as characteristics of the
sensors and availability of computational resources. In this
paper, these architectures are discussed and applied to compare
their respective fall detection performances.

A. Data Level Fusion

The first architecture, data level fusion, is a technique that
mostly used in image processing applications. It combines

Fig. 3: Area feature extraction process
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Algorithm 1 Envelope Detection

Input: E(n), P (n, k), α
Output: fenv , Outer Envelope Indices

Initialization
First LOOP Process

1: for n = 1 to R do
2: Eth(n)← E(n) ∗ α

Second LOOP Process
3: for k = 1 to N do
4: Etemp ← P (n, k)
5: if

(
Etemp ≥ Eth(n)

)
then

6: fenv(n)← k
7: Return first loop
8: end if
9: end for

10: end for
11: return fenv

the registered images to increase the spatial resolution of
low detail multi-sensor images while preserving their spectral
information. In our case, data level fusion is utilized to regain
the information that has been lost due to several reasons,
such as aspect angle, target distance, and other types of
environmental conditions. We consider two different data level
fusion algorithms: simple averaging and DWT [21].

1) Simple Averaging Fusion: The simplest data level fusion
method is to take an average of the gray level registered
images, pixel by pixel. Averaging is a basic and straight-
forward process, and proceeds by simple averaging of the
corresponding pixels in the two sensor images. However, this
average fusion method may produce several undesired effects
and reduce feature contrast which can lead to a degraded
performance at the classification end of the system. The
images acquired from sensor 1 and sensor 2 for path 1 can
be seen in Fig 4-(a) and (b). The fused image of the time
integrated range-Doppler maps is shown in Fig. 4-(c).

2) DWT Fusion: Wavelet theory has been extensively used
in image processing to provide a multi-resolution decompo-
sition of an image in a biorthogonal basis which results in a
non-redundant image representation [21]. The basis functions
are referred as wavelets and generated by the translation and
dilation of mother wavelets. In wavelet analysis, the image or
the signal is decomposed into scaled and shifted versions of
the chosen mother wavelet functions. We employed the mother
wavelet function as ”Haar”.

DWT separately filters and down samples the image in the
vertical and horizontal directions. DWT provides low-high,
high-low, high-high and low-low bands. The low-low band
contains the average image information and can be seen as a
smoothed and sub-sampled version of the registered image.
Low-high, high-low and high-high bands are detailed sub
images and they contain horizontal, vertical and diagonal in-
formation of the registered image, respectively. More formally,
DWT decomposes an image recursively, depending on the de-

(a) (b)

(c) (d)

Fig. 4: Multi-sensor fall data for path 1 (a) Sensor 1 aspect
angle: 0 degrees (b) Sensor 2 aspect angle: 90 degrees and
data fusion results of (c) Simple average (d) DWT fusion

composition level, into several frequency levels and each level
contains transform values. After the nth level decomposition
of the registered image, the output can be shown as

In−1 = ILLn
+ ILHn

+ IHLn
+ IHHn

(4)

where ILLn
, ILHn

, IHLn
, IHHn

are the average image,
vertical, horizontal and diagonal details of the decomposi-
tion, respectively. The nth level decomposition consists of
3n + 1 sub-image sequences. In DWT-based fusion scheme,
the registered images (time-integrated range-Doppler maps)
acquired from different sensors are decomposed separately.
Then, the transformation coefficients of the sensor images are
combined using a fusion rule, γ. The employed fusion rule
takes average of the approximation coefficients and selects
the detailed coefficients in each sub-band with the largest
magnitude. The final fused image is generated by taking the
inverse Discrete Wavelet transform (IDWT), and can be seen in
Fig. 4-(d). It manifests good quality of the relevant information
from the two different sensors.

B. Feature Level Fusion

The second architecture for multi-sensor fusion is called
feature level fusion. In this case, each sensor provides the
observational data, time-integrated range-Doppler maps, from
which a feature vector is extracted. We define our feature set
as the range-Doppler area. These feature sets are concatenated
together into a single feature vector which represents an input
to the SVM. The output of the classifier becomes a joint or
fused declaration of motion identity based on the combined
feature vector from the two sensors. Prior to integrating the
feature vectors from individual sensors into a single larger
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TABLE I: Performance evaluation metrics to compare the data-level fusion algorithms

Fusion Mutual Information (MI) Spatial Frequency (SF )

Simple Average Fusion 0.2247 0.0109
DWT Fusion 0.2845 0.0279

TABLE II: Scores (%) for each method by 4 different metric

Accuracy Fall Detection Rate False Alarm Rate Missed Rate

Single sensor 66.84 40.21 6.52 59.79
Multi-Sensor data level fusion 91.63 87.81 4.54 12.19
Multi-Sensor feature level fusion 95.95 94.96 3.05 5.04
Multi-Sensor decision level fusion 79.63 65.79 6.52 34.21
Sensor Selection 86.99 79.84 5.84 20.16

feature vector, data alignment and association functions are
applied to perform the multi-sensor task. Training scheme of
the feature level fusion requires observations from both sensor.

C. Decision Level Fusion

The third and final architecture is called decision or clas-
sification level fusion. More generally, each sensor converts
the range-Doppler information into a preliminary classification
output. Decision level fusion can be divided into two general
groups. The first group mostly focuses on the classifiers and
puts emphasis on the development process of the classifier
structure. On the other hand, the second group operates mainly
on the decisions which are determined by separate classifiers.
The decision level fusion methods (Bayesian fusion, fuzzy
integrals, Dempster-Shaffer combination and etc.) attempt to
reduce the level of uncertainty by optimizing the relation
between the measures of evidence. For fall detection, the
second group of decision level fusion methods have been
considered in [15], with the application of Choquet integrals
to improve the classification accuracy.

In this work, we focus on the fusion of soft outputs
produced by classifiers. Decision fusion methodology involves
two UWB radar sensors and two classifiers (kNN, and SVM).
Simple Bayes average fusion was employed in order to
improve fall detection rate where the target signatures were
severely attenuated by the aspect angle. However, Bayesian
methods can only applied to the soft outputs expressed in
posterior probabilities. Standard SVMs do not provide the
calibrated posterior probabilities to enable decision fusion.
Therefore, when the classes are not perfectly separable, an
additional sigmoid function can be employed to map the SVM
classification outputs into probabilities [9]. kNN provides the
classification results in posterior probabilities so it does not
need any extra function. The example diagram of the decision-
level fusion based fall detection system is depicted in Fig. 5.

V. SENSOR SELECTION

The main difference between single sensor and multi-sensor
systems manifests itself in the dependency on the aspect angle.
Thus, one of the main tasks of a multi-sensor system is to
determine the sensor that provides sufficient information for
classification decisions. Sensor selection could be carried out

Fig. 5: The diagram of decision level fusion

in several ways. For fall detection, the power spectral density
(PSD) of a specific Doppler bandwidth, which categorizes the
motion, has been used in [16].

In this work, an entropy-based selection method is utilized
to measure the quality of the time-integrated range-Doppler
maps obtained from each sensor. Generally, entropy metrics
are used to measure the information content of an image.
Therefore, range-Doppler map with high information content
will proportionally have high entropy. We implemented the
Rényi entropy which quantifies the uncertainty of underlying
distribution and it can be easily adopted for quantifying the
complexity or randomness of time-integrated range-Doppler
maps [22]. Rényi entropy is defined as

Hα =
1

1− α
log2

∑
n

∑
k

(
P (n, k)∑

n

∑
k P (n, k)

)α
(5)

where α is the order of the entropy and it takes values between
0 and 1. P (n, k) is the time-integrated range-Doppler map.
It is noted that large values of α enhance the peaks in the
entropy profile of the image while smoothing out some of the
local details, whereas lower α values are not as discriminative
[23]. The most important drawback of the Réyni entropy
is sensitivity to noise and other types of unwanted rapid
fluctuations.

The Rényi entropy offers a metric of the contribution of a
given sensor to the classification problem. Thus, the sensor
with the highest Rényi entropy is selected for the feature
extraction and classification process.

VI. EXPERIMENTAL RESULTS

In this section, single sensor, four aforementioned fusion
and sensor selection methods were compared. SVM classifier
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with a radial basis kernel function was utilized. 60% of the
recorded signals were used for training the classifier, whereas
the remaining 40% were used as testing. Data for training
and test samples were selected in a random fashion, and 1000
Monte Carlo trials were conducted.

The performance comparison between data-level fusion
methods (simple average and DWT) is obtained by computing
the quality assessment metrics: fusion mutual information
and spatial frequency, as tabulated in Table 1. The spatial
frequency measures the overall activity level of the fused
image [24]. High value of spatial frequency indicates that
the fused image contains important information from both
images. The degree of dependency between input and fused
image is computed by fusion mutual information [25]. Larger
value of this metric indicates a better quality. From these
metrics, a number of important observations can be made. It
is observed that simple averaging method exhibits a degraded
fusion performance in every metric. This can be explained
by the artifacts and noise effects that are formed after the
addition of the two registered images. On the other hand,
DWT-based fusion provides the better performance which is
anticipated due to higher level of decomposition and noise
filtering properties of the DWT. Therefore, we only used DWT
fused images for feature extraction and classification.

In Table 2, accuracy, fall detection rate, false alarm rate
and missed rate are provided for single-sensor, multi-sensor
fusion methods (data, feature and fusion level) and sensor
selection. The single sensor fails to provide desirable detection
performance because of the angle dependency as expected. On
the other hand, the data-level fusion method provides an ac-
ceptable level of classification accuracy at 91.63%. Decision-
level fusion yields 79.63% accuracy which can be explained
by the simplicity of the fusion method. Sensor selection also
provides an acceptable level of accuracy at 86.99%. Finally,
the feature level fusion method provides the highest accuracy,
fall detection rate and the lowest false alarm and missed rate.

VII. CONCLUSION

With the shortcomings of a single radar unit fall classifier,
this paper puts forward a multi-sensor based fall detection
system with different levels of data fusion and sensor selec-
tion. Two UWB radar sensors were used for the generation
of time-integrated range-Doppler maps. Multi-sensor fusion
architectures and sensor selection methods were discussed.
It was shown that the DWT fusion method outperforms the
simple averaging fusion. Finally, classification performance
comparison was presented between single-sensor, multi-sensor
fusion methods and sensor selection. It was demonstrated that
feature level fusion provides the best performance.
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