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Abstract—Radar technology for in-home gait assessment has
recently become of increased interest due to its safety, reliability
and privacy-preserving, non-wearable sensing mode. Radar-based
micro-Doppler signatures of humans can be used to reveal key
characteristics that capture changes in gait and enable detecting
abnormalities. In elderly care, the influence of assistive walking
devices on gait time-frequency signal characteristics has to be
examined for proper diagnoses, assessment of rehabilitations, and
fall risk predictions. In this paper, we demonstrate the effects of
assistive walking devices, such as a cane, on the back-scattered
radar signals. A K-band radar is used to discriminate between
assisted and unassisted walks. Detection of walking aids and
gait recognition are performed based on features obtained from
the cadence-velocity diagram. Experimental data are presented
for walking towards and away from radar, delineating different
micro-Doppler signatures which are attributed to distinctions in
upper and lower leg kinematics in both cases.

I. INTRODUCTION

A great number of seniors resort to assistive walking de-
vices, such as a cane or a walker, to compensate for decrements
in balance, gain mobility and to overcome the fear of falling.
In 2011, 8.5 million U.S. seniors aged 65 and older reported
having any assistive walking device, with the most commonly
device being a cane used by two thirds of the elderly [1].
The correct use of mobility devices is essential to guarantee
optimal support and avoid postural deformities. This becomes
important in both cases of elderly gaining mobility and patients
recovering from injuries or physical impairment. However,
assessing proper handling of walking aids is often difficult
for healthcare providers and nursing staff. The information
provided by the monitoring radar on elderly’s use of a cane
inside his/her home, day and night, can be valuable in design-
ing proper treatment and charting a recovery course. Further,
constant monitoring of changes in gait enables early diagnosis
of different diseases, such as Parkinson’s, cardiopathies and
strokes [2]. Obviously, the performance of such gait monitoring
systems should not be impaired by the use of walking aids.

Due to its unobstrusive, safe and privacy-preserving oper-
ating mode, radar for indoor human monitoring is promising
to become a leading technology for assisted living in the
future [3], [4]. From the back-scattered radar signal, human
activities can be recognized by exploiting time-frequency
features caused by the micro-Doppler (mD) effect [5]. The
so-called mD signatures occur as modulations around the
carrier frequency of the transmitted radar signal in the Doppler
domain and are characteristic for targets’ motions. Specifically,
in the case of a walking human, the mD signatures describe

human kinematics by capturing velocity, acceleration, and
rotation of individual body parts. Hence, mD features are well
suited to discriminate different human motions and recognize
variations in these.

Radar-based human gait recognition has been previously
investigated, e.g. in [6], [7], [8]. However, so far, human
gait characteristics with assistive walking devices have not
been widely examined. Amin et al. [9], [10] showed that
walking aids, such as a cane or a walker, can be detected
by carefully analyzing the back-scattered radar signal. For
discriminating between gaits with and without a cane, two
features were extracted from the time-frequency representation
(TFR) utilizing the extended modified B-distribution (EMBD).
The work by Gurbuz et al. [11] investigated the effect of
various walking aids on the characteristics of radar return
signatures of human walk. Different degrees of mobility were
compared, i.e., an unaided walk, limping, walking with a
cane/tripod or a walker, and using a wheelchair. Amongst
other systems, a 24 GHz pulse-Doppler radar was used for gait
classification utilizing pseudo-Zernike moments, as suggested
in [12], and a support vector machine. Using measurements
of 5 s (and 10 s) duration a classification accuracy of 72.6%
(79.7%) was achieved, respectively. For the unaided walk, the
correct classification rate was 73.3% (81.3%), whereas the use
of a cane was correctly detected in 55.4% (61.9%) of the cases.

This work focuses on cane-assistive walks and examines
corresponding changes in gait patterns and their effect on the
characteristics of radar mD signatures. First, we call attention
to the fundamental differences in mD signatures of walks
towards and away from the radar system. These differences
have been overlooked and not considered by any existing work
in this field. Then, the aim is to discern an unassisted walk from
a walk with a cane, independent on how the cane is actually
used. In particular, we consider assisted walks where the cane
is synchronized with the opposite or the same side leg as the
arm carrying the cane, as well as, walks where the cane is
synchronized with neither leg.

The remainder of this paper is organized as follows. Section
II introduces time-frequency and cadence-velocity analysis of
back-scattered radar signals from walking humans. From the
cadence-velocity representation features are extracted for clas-
sification of normal and cane-assisted walks, as described in
Section III. Experimental results using real data are presented
in Section IV and final conclusions are given in Section V.
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Fig. 1: Examples of spectrograms for a person (a) walking slowly towards the radar, (b) with a cane in sync with one leg,
and (c) with a cane out of sync with any leg (cane - leg - leg - cane - ...). For walking away from the radar system, (d) shows an
unassisted walk, in (e) the pattern is (cane - leg - cane - leg - cane), and in (f) it is (leg - cane - leg - leg - cane - ...).

II. GAIT CHARACTERISTICS WITH AND WITHOUT CANE

A. Time-Frequency Representations

The back-scattered radar signal from a walking person is
highly non-stationary and consists of multiple superimposing
components. TFRs are well suited for revealing the time-
varying characteristics of the received radar signal in the joint
Doppler frequency vs. time domain. The most common choice
of TFR in this area is the spectrogram, which belongs to the
class of non-linear TFRs and depicts how the signal power
varies with time and frequency [3]. The spectrogram is given
by the squared magnitude of the short-time Fourier transform
and is calculated as

S(n, k) =

∣∣∣∣∣
M−1∑
m=0

w(m)x(n−m)e−j2π
mk
M

∣∣∣∣∣
2

, n = 0, . . . , N−1,

(1)
where w(·) is a window of length M ∈ N, x(·) is the time-
domain radar return signal of length N ∈ N, and k is the
normalized frequency.

The use of assistive walking devices leads to distinct mD
signatures compared to an unassisted walk. Fig. 1 depicts
examples of spectrograms for different walking styles with
and without a cane when moving towards (top row) and away
from (bottom row) the radar system. In (a), the spectrogram
of a person walking slowly towards the radar is given. The
swinging of the feet leads to clear sinusoidal-shaped mD stride
signatures around the main torso signature. The latter can
be identified by the highest energy in the spectrogram. Note
that there is no arm swinging involved in all measurements
presented here. Fig. 1 (b) and (c) show spectrograms of a

person walking with a cane. In (c), the cane is moved in sync
with the opposite-side leg such that the first and third mD
signature depict the overlay of foot and cane signatures. In
(c), the cane is moved asynchronously with the legs, which
leads to non-overlapping foot and cane mD signatures. Here,
the first, fourth, and seventh mD signature are due to the
cane movement, whereas the remainders are normal stride
signatures as in (a).

For the same walking styles, Fig. 1 (d), (e) and (f) show the
spectrograms when the radar system has a back-view. Clearly,
the mD signatures are different compared to towards-radar
measurements. In (d), we see that an mD signature of a normal
gait stride is composed of two major parts: a sinusoidal-shaped
and an impulsive-like mD component. The former is due
to the pendulum-like motion of the thigh swinging forward.
The latter is caused by reflections from the upper calf. Its
salient mD signature is embraced in the barely recognizable
sinusoidal-shaped foot signature. This means that the upper
and lower leg kinematics in a human walk lead to distinct mD
features when the radar has a back view compared to front-
view measurements. These characteristics are also visible in
every second stride signature in (e), which shows a person
walking with a cane being moved in sync with one leg.
Knowing the salient features of a normal gait stride signature,
we can visually tell that the second and fourth mD signature
correspond to a normal stride, whereas the remaining ones
are altered by the cane’s movement. Finally, (f) shows the
spectrogram of a cane-assisted walk away from the radar,
where the cane is moved out of sync with any leg. Thereby,
distinct mD signatures of cane and leg become visible. Here,
the second and fifth mD signature come from the cane only,
whereas the remaining ones correspond to a normal stride.
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Fig. 2: Examples of cadence-velocity diagram (CVD) (bottom) and mean cadence frequency spectrum (top) corresponding to the
measurements in Figure 1, i.e., the top row depicts measurements towards the radar system and bottom row shows measurements
when the radar has a back-view.

B. Cadence-Velocity Diagram Analysis

The human walk is periodic with each stride or half of
the gait cycle. As described in section II-A, the use of an
assistive walking device, such as a cane, alters the mD gait
signature in the TFR. In order to analyze periodicities in
the spectrogram, we calculate the cadence-velocity diagram
(CVD). Features obtained from the cadence-velocity (CV)
domain have been employed previously for radar-based human
motion classification, e.g., in [6], [12], [13], [14]. The CVD is
obtained by taking the Fourier transform of the spectrogram
along the time dimension, i.e., Doppler frequency slices are
transformed to the cadence frequency domain. Thus, the CVD
is calculated using the spectrogram S(n, k) as

C(ε, k) = Fn{S(n, k)} =

∣∣∣∣∣
N−1∑
n=0

S(n, k)e−j2π
εn
N

∣∣∣∣∣ , (2)

where ε denotes the cadence frequency and N ∈ N is the
number of samples in a frequency slice of the spectrogram.

For a walking person, the CVD reveals the mean velocity
along with the step rate in a joint Doppler frequency vs. ca-
dence frequency representation. Summing over all cadence fre-
quencies for each Doppler frequency gives the mean Doppler
spectrum. The maximum of the mean Doppler spectrum serves

as an estimate of the average walking speed of a person, also
referred to as base velocity. Taking the sum over all Doppler
frequencies for each cadence frequency, yields the mean
cadence spectrum. The cadence frequency that corresponds
to the highest amplitude in the mean cadence spectrum, is
the fundamental cadence frequency, which corresponds to the
stride rate in unassisted walks. However, for assisted walks,
this correspondence is not necessarily true, as explained below.

Fig. 2 shows the CVDs of the walks given in Fig. 1. For an
unassisted walk, the CVD is depicted in (a), where 0.98 Hz is
the fundamental cadence frequency and represents the stride
rate of the walk. When walking with a cane in sync with one
leg, every other mD signature is altered. This results in an
additional peak in the mean cadence spectrum at half the stride
rate. E.g., from the CVD in (b), we find that the stride rate
is 0.78 Hz due to corresponding high amplitudes in the range
of 120 − 270 Hz in Doppler frequency. However, the highest
peak in the mean cadence spectrum appears at half the stride
rate. The latter comprises both, the cane’s movement of high
Doppler frequencies and the arm movements of lower Doppler
frequencies. Similarly, walking with a cane that is aligned with
neither leg leads to a specific pattern in the CVD, as depicted in
(c). In this case, the mean cadence spectrum peaks at 1.48 Hz,
which describes the rate of adjacent mD signatures in the TFR.



The CVD clearly shows an additional peak at one third of the
fundamental cadence frequency. It relates to the similarity of
every third mD signature, which is either pairs of cane or leg
signatures. Moreover, we observe a strong harmonic at two
thirds of the fundamental cadence frequency. Note, that we
cannot define a stride rate here, as the strides are nonperiodic.

Fig. 2 (d), (e) and (f) show the corresponding CVDs for
walking away from the radar with and without a cane. In
general, the mean cadence spectra reveal stronger peaks at
the fundamental cadence frequency compared to towards-radar
measurements. However, the effects of the cane on the CVD
structure are less prominent.

III. GAIT CLASSIFICATION IN CANE-ASSISTED WALKS

A. Cadence-Velocity Features

In order to perform classification of different human walk-
ing styles, both assisted and unassisted, we extract classical
gait features from the CV domain [6], [13]. First, the mean
cadence spectrum is formed from the CVD. In this case, only
absolute Doppler frequencies larger than 150 Hz are consid-
ered to confine the feature to leg and cane movements only.
The highest peak in the mean cadence spectrum marks the
fundamental cadence frequency. Further, to capture the profile
of the mean cadence spectrum, we extract its dominant peaks
and calculate the mean peak distance in cadence frequency.
Finally, the base velocity is estimated from the maximum in
the mean Doppler spectrum. Thus, we define a feature vector
for each measurement as

f = [f0, d̄pks, v0]T , (3)

where f0 is the fundamental cadence frequency, d̄pks is the
average distance of detected peaks in the mean cadence
spectrum and v0 is the estimated base velocity of the walk.

B. Principal Component Analysis of CVDs

Besides utilizing CV features that have a physical inter-
pretation, such as the average stride rate and the base velocity,
the CVD itself exhibits characteristic patterns for identifying
different walking styles, as outlined in Section II-B. In order to
exploit these patterns for gait classification and detection of a
cane, we perform a principal component analysis (PCA) of the
CVDs. A similar approach, i.e., PCA of spectrograms, has been
successfully applied to radar-based human gait recognition
[15], [16] and fall motion detection [17]. However, for gait
recognition the CVD is more appropriate for revealing the
periodicity of each of the micro-Doppler components.

The CVD is obtained as follows. First, we calculate the
spectrogram of a 6 s measurement sampled at 2.56 kHz. Here,
the STFT is calculated using a Hamming window of length
255 samples, which is equivalent to 0.1 s, and 2048 frequency
bins. Thus, the spectrogram is given on a grid of 2048 Doppler
frequency bins by 15,360 time samples. Then, the FT of the
spectrogram is taken along the time axis to yield the CVD.
Using 216 points in the FT calculation leads to a cadence
frequency resolution of approximately 0.02 Hz. In order to
compensate for different stride rates among the measurements,
we use f0 to warp the CVD image along the cadence frequency
axis, such that all CVDs have f0 = 1 Hz. Then, we normalize
each CVD by scaling its entries to the range of [0, 1] such

that it becomes a gray-scale image. Then, we extract the
relevant part, i.e., Doppler frequencies from 0 Hz to +450 Hz
and -450 Hz for towards and away from radar measurements,
respectively, and cadence frequencies up to 3 Hz. As we expect
stride rates around 1 Hz the latter range is sufficiently large
to capture the fundamental cadence and its first and second
harmonic. Given this excerpt of the CVD the resulting image
is of dimension 361× 78 pixels.

For PCA we form a data matrix whose columns contain
all vectorized CVD-images that are in the training set. The
vectorized CVD-images are of size 28158×1, where the length
of the vector describes the dimensionality of our vector space.
Note, that we arrange the CVD-images row by row to the 1D
vector to take into account the relations of a given pixel to
pixels in neighboring columns, which is more appropriate in
our case. Performing PCA on the i× j data matrix, composed
of j vectorized CVD images with i = 28158 pixels, we
obtain j eigenvectors of length i, actually eigenimages, and
j corresponding eigenvalues. Principal components are those
eigenvalues that explain most of the variance in the data. The
eigenimages that correspond to the principal components span
a subspace. All CVD images are projected on this subspace
and the projections, denoted as p, are used for classification.
Choosing l principal components, the feature vector is thus
defined as

p = [p1, p2, . . . , pl]
T , l ≤ j ∈ N. (4)

C. Classification

Next, a classifier C(·) is used to map the final feature
vector, formed of feature vectors defined in (3) and (4), as

z = [f ,p]T , (5)

on a discrete set of classes c = C(z), c ∈ {C1, C2, . . . , Cq},
where C denotes a single class and q is the number of classes.
Here, we aim at distinguishing between an unassisted (NW)
and an assisted walk, whereby the latter can be a walk with
a cane in sync with either leg (CW) or out of sync with
any leg (CW/oos). Thus, we define q = 3 classes such that
c ∈ {NW,CW,CW/oos}. Here, the nearest neighbor (NN)
classifier is used to discriminate between unassisted and two
types of assisted walks, as this method of supervised learn-
ing method typically achieves high classification performance
without a priori assumptions on the distribution from which
the training samples were generated. The classifier is trained
on a subset of the available data, whereas the remainder is
used for testing. Unseen test data is then classified based on
the distance to the nearest training case. Here, the Euclidean
distance measure is used.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The UWB radar [18] data were mostly collected in a semi-
controlled lab environment at the Radar Imaging Lab at Vil-
lanova University. About one third of the data were collected
in an office environment at Technische Universität Darmstadt.
The radar was set to FMCW mode with linear frequency
modulation sweeps and a carrier frequency of 24 GHz. Doppler
filtering was applied to obtain the velocity information of the
target by utilizing the phase shift between different sweeps. In



TABLE I: Walking styles being analyzed and corresponding
number of measurements.

Walking style Towards Away

Normal walk (NW) 17 22

Cane-assisted walk - synchronized (CW) 25 23

Cane-assisted walk - out of sync (CW/oos) 13 12

Total 55 57
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Fig. 3: Classification accuracy vs. the number of principle
components used for towards (T) and away (A) from radar
measurements.

total, seven subjects were asked to walk slowly back and forth
between two points in front of the radar, approximately 4.5 m
and 1 m from the antenna feed point, which was positioned
1.15 m above the floor. Data were collected with a non-oblique
view to the targets and at a 0◦ angle relative to the radar line-
of-sight. All subjects were asked not to swing their arms. In
total, a set of 112 measurements of 6 s duration are considered,
whereof 55 are towards the radar and 57 are away from the
radar. The details of the test set are given in Table I.

B. Feature Selection

The performance of the classifier is sensitive to the number
of features used as well as to the direction of motion, i.e., to-
wards or away from the radar. Figure 3 gives the classification
accuracy in dependence of the number of principle components
used, where the dashed lines refer to a reduced feature vector
with PCA-based features only. Here, the classification accuracy
is given by the number of correct classifications divided by the
total number of samples in the test set. In general, classification
accuracy is higher when including the CV-based features, par-
ticularly in case of towards-radar measurements. Concluding,
we choose a number of seven eigenimages for both directions,
and include the CV-based features for classification.

C. Classification Results

Classification is performed for towards and away from
radar measurements separately. In each case, 70% of the
data are randomly chosen for training and the remainder

TABLE II: Confusion matrix for towards-radar measurements
with (and without) CV-based features. Numbers represent the
correct classification rate in %.

True class / Predicted class NW CW CW/oos

Normal walk (NW) 83 (76) 14 (22) 3 (2)

Cane-assisted walk - synchronized (CW) 12 (13) 86 (85) 2 (2)

Cane-assisted walk - out of sync (CW/oos) 1 (5) 16 (28) 83 (67)

TABLE III: Confusion matrix for away-from-radar measure-
ments with (and without) CV-based features. Numbers repre-
sent the correct classification rate in %.

True class / Predicted class NW CW CW/oos

Normal walk (NW) 63 (72) 34 (27) 3 (1)

Cane-assisted walk - synchronized (CW) 27 (30) 71 (68) 2 (2)

Cane-assisted walk - out of sync (CW/oos) 6 (16) 7 (17) 87 (67)

are used for testing. Final results, see Table II, are obtained
by averaging 100 classification results. Towards radar walks
can be classified correctly in 84% of the cases using PCA-
based features and CV features. The false alarm (FA) rate as
well as the missed detection (MD) rate are both 17%. Here,
MD refers to the case where a cane was present, but the
gait is wrongly classified as unassisted. Without CV features
the classification accuracy decreases to 76% (FA: 24%, MD:
20%). For measurements of a human walking away from the
radar system, classification accuracy is 70% (FA: 34%, MD:
34%), using PCA-based features and CV features. Without CV
features, the classification accuracy drops to 68% (FA: 28%,
MD: 36%).

For both directions, mostly walks with a cane in sync with
one leg (CW) are confused with an unassisted walk (NW) and
vice-versa. Considering that we only evaluated measurements
of 6 s duration, this result is not unexpected, as the cane only
shows 2-3 times during a measurement, depending on the
stride rate. For longer observation times, this confusion should
decrease. Further, in view of the variability of walks considered
here, i.e., walks with different base velocities and stride rates,
as well as different persons walking, the results underscore the
applicability of the presented approach.

V. CONCLUSION

This work deals with human gait recognition in cane-
assisted walks, which contributes to the subject of assisted
living and gait analysis for diagnoses, rehabilitations, and
fall risk prediction in elderly care. The influence of assistive
walking devices on radar-based human walk characteristics
is revealed. Features for gait classification in cane-assisted
walks are extracted from CVDs of back-scattered radar data
utilizing PCA. Using real data obtained with a K-band radar,
gait classification results are presented for the two cases of
moving towards and away from the radar with and without a
cane.
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