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Abstract— We introduce a new and simple technique for 

human gait classification based on the time-frequency analysis 
of radar data. The focus is on the classification of arm 
movements to discern free vs. confined arm swinging motion. 
The latter may arise in hostage situation or may be indicative to 
carrying objects with one or both hands. The motion signatures 
corresponding to the arm and leg movements are both extracted 
from the time-frequency representation of the micro-Doppler. 
The time-frequency analysis is performed using the 
multiwindow S-method. With the Hermite functions acting as 
multiwindows, it is shown that the Hermite S-method provides 
an efficient representation of the complex Doppler associated 
with human walking. The proposed human gait classification 
technique utilizes the arm positive and negative Doppler 
frequencies and their relative time of occurrence. It is tested on 
various real radar signals and shown to provide an accurate 
classification.     
 

Index Terms— Time-frequency distributions, radar signals, 
human walking, micro-Doppler signatures 

I. INTRODUCTION 
 

Among  several possible technologies, including  acoustics, 
thermal, optical, and radio frequency, RF based technology is 
considered an attractive modality for human motion detection 
and classifications, as it can be applied under all weather, 
light, smoke, and for targets obstructed by opaque material. 
Recently, radar has been successfully used in urban sensing 
applications and through wall imaging [1]-[5].  

This paper considers radars for the classification of human 
gait based on distinctions in the walking person’s arm 
movements. In particular three types of walking motions are 
of interest: 1) Free arm-motion (FAM) characterized by 
swinging of both arms, 2) Partial arm-motion (PAM) which 
corresponds to a motion of only one arm, and 3) No arm-
motion (NAM) which corresponds to no motion of either arm. 
The NAM is referred to as a stroller or saunterer [6]. The last 
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two classes are commonly associated with a person walking 
with his/her hand(s) in the trouser pockets or a person 
carrying light small or large heavy objects, respectively. All 
three categories are considered important in law enforcement 
and homeland security operations.  

The radar micro-Doppler for human gait has been an active 
area of research for the last decade [7], [8]. In addition to the 
main Doppler shift due to the motion of the human torso, the 
relative motions of the limbs to the body introduce micro-
Doppler which presents itself as a time-varying frequency 
shift. The complex nonstationary Doppler signature of human 
walking can be revealed via a joint time-frequency signal 
representation in lieu of the traditional Fourier transform, of 
the radar return. The degree of clarity and depiction of the 
time-dependent Doppler frequency for each part of the human 
body in motion can vary depending on the time-frequency 
analysis tool employed. Compared to other methods, time-
frequency distributions, which capture the instantaneous 
frequency laws are most suitable for the underlying 
application [9]-[13].  

Classifications of the above types of human gait were 
considered in [6], [14]-[16]. The work in [6] only dealt with 
FAM and NAM types and used Spectrogram for the 
distribution of Doppler signal power in the time-frequency 
domain. This work, though important, did not consider 
distinctions in the types of motion, but rather estimated the 
human walking parameters by minimizing the difference 
between simulated Thalmann model [16] and real 
measurements. Human gait classifications of the three types 
FAM, PAM, and NAM, were discussed in [14] based on 
subspace learning using principal component analysis (PCA). 
The training set consists of feature vectors defined as either 
time or frequency snapshots taken from the spectrogram of 
radar backscatter. This method, although generated 
promising classification results, is nonparametric and did not 
explicitly utilize the periodic and evolving nature of the 
human gait in the three motion types. The time-frequency 
classifier in [15] applied distance measures between training 
and test sets represented by the time-frequency distributions 
of the corresponding Doppler signals. This classifier is also a 
nonparametric method.  It neither selects nor does it separate 
the key and distinctive Doppler features, associated with the 
arms’ motions. The classifier employed in [17] was based on 
SVM and considered several types of human motions, 
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including running and crawling. It is a parametric technique 
and used different numerical features of the human motion. 
This technique, however, did not consider the classification of 
the above three classes and their corresponding salient 
feature. 

Our contribution to the above gait classification problem is 
twofold. We apply the recently introduced multiwindow S-
method [18] as a high time-frequency concentration 
technique, in lieu of Wigner distribution, spectrograms, or 
other time-frequency signal representations. It is shown that 
this method, applied to the three types of human gait, 
effectively reveals the arm motions in the time-frequency 
domain. The result of the multiwindow S-method is used to 
provide the perimeter of the arm motions. A simple 
classification technique is then employed which acts on the 
arm perimeters and incorporates the positive and negative 
strides of the arm swings as well as their relative time of 
occurrences. In this respect, the proposed method does not 
predicate on learning or reference sets, as in the case in both 
[14], [15] and, as such, avoids the potential mismatch 
between learning and test sets which is likely responsible for 
the rather high classification errors exhibited in applying 
those methods. It is noted that the multiple windows are 
obtained by using the Hermite functions, which have good 
time-frequency localization property [19], [20]. By employing 
only a few Hermite functions (of lowest orders), the 
complexity of realization is slightly increased comparing to 
the standard S-method.  

The paper is organized as follows. Section II provides the 
theoretical background on the time-frequency analysis. A 
brief mathematical model of Micro-Doppler phenomenon 
induced by human motion is given in Section III.A, while the 
time-frequency based classification procedure is proposed in 
Section III.B. The application of the proposed procedure is 
demonstrated through the examples with real radar signals in 
Section IV. This Section also contains a performance 
comparison between the Hermite S-method and both the 
spectrograms and S-method applied alone without the 
multiwindowing. The concluding remarks are given in 
Section V. 

II. THEORETICAL BACKGROUND- TIME-FREQUENCY ANALYSIS  
 

The time-frequency representation of a signal ( )( ) j ts t Ae φ=  
that provides the energy distribution along the instantaneous 
frequency may be written as [21]: 
 { }2 ' ( , )( , ) 2 ( ( )) ( ),jQ tTFR t A t FT e Wτ

ω ωω π δ ω φ ω= − ∗ ∗  (1) 

where ( , )Q t τ is a spread factor defining the distribution 
spread around the instantaneous frequency, the Fourier 
transform is denoted by FT, while ( )W ω is the Fourier 
transform of a window in time domain. The simplest time-
frequency representation is obtained by using the short-time 
Fourier transform (STFT): 

 ( , ) ( ) ( ) ,jSTFT t s t w e dωτω τ τ τ
∞

−

−∞
= +∫  (2) 

where ( )w τ is a window function. The energetic version of 
the STFT is called spectrogram, and it is the squared module 
of the STFT: 2( , ) ( , )SPEC t STFT tω ω= . The spectrogram 
can be successfully used in many applications. However, there 
is always a trade off between time and frequency resolution. 
Also, the spread factor contains all higher phase derivatives: 

 
2 3 4

(2) (3) (4)( , ) ( ) ( ) ( ) ...
2! 3! 4!

Q t t t tτ τ ττ φ φ φ= + + +  (3) 

The resolution in the time-frequency domain is improved 
by introducing quadratic time-frequency distributions, such as 
the Wigner distribution.  

* *( , )
2 2 2 2

jWD t w w s t s t e dωττ τ τ τω τ
∞

−

−∞

       = − + −∫        
       

. (4) 

 
Note that, in the case of the Wigner distribution, the even 

phase derivatives disappear from the spread factor: 

 
3 5 7

(3) (5) (7)
2 4 6( , ) ( ) ( ) ( ) ...

2 3! 2 5! 2 7!
Q t t t tτ τ ττ φ φ φ= + + +  (5) 

The S-method is defined as a quadratic distribution that 
combines good properties of the spectrogram and the Wigner 
distribution [22]. It preserves the auto-terms concentration as 
in the Wigner distribution and additionally reduces the noise 
influence [23] (the spread factor is also given by (5)). 
Furthermore, the S-method can be implemented in a 
numerically very efficient way, which makes it attractive for 
applications. It is given by: 
 *( , ) ( ) ( , ) ( , ) ,SM t P STFT t STFT t d

θ
ω θ ω θ ω θ θ= + −∫  (6) 

where ( )P θ is the frequency domain window of finite length. 
The convergence within P(θ) is very fast, providing high 
auto-terms concentration with only a few convolution terms. 
At the same time, it reduces (or removes) the cross-terms in 
the Wigner distribution [22].  

Additional concentration improvement for time-varying 
spectrum has been achieved by introducing multiwindow 
time-frequency analysis [23]-[26]. Because of their 
orthogonality and attractive localization properties [26], the 
Hermite functions can be used as optimal windows. The k-th 
function is recursively calculated as: 

 1 2
2 1( ) ( ) ( ), 2,k k k

kt t t t k
k k- -

-Y = Y - Y " ³  (7) 

where 
2 2/ 2 / 2

0 14 4
1 2( ) , ( ) .t ttt e t e
p p

- -Y = Y =  

The multiple windows have been initially used for the 
multiwindow spectrogram, given by [23]-[26]: 
 

 
1 2

0

1( , ) ( ) ( ) ( )2

K
j

k k
k

MSPEC t d t s t e dwtw t t tp

-
-

=
= Y -å ò , (8) 
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where dk are the weighting coefficients, and K is the number 
of employed Hermite functions. The weighting coefficients 
are obtained by solving the system:  

2 21

2 2
0

( ) ( ) 1 0
( )

0 0( ) ( )

nK k
k

k k

A t d for n
d t

for nA t d

t t t t

t t t

-

=

+ Y ì =ïï= íï >+ Y ïî

òå
ò

. 

All higher phase derivatives up to (K+1)th are removed from 
the spread factor, which is given in the form: 
 

1 2 3( 1) ( 2) ( 3)( , ) ( ) ( ) ( ) ...
( 1)! ( 2)! ( 3)!

K K KK K KQ t t t t
K K K
τ τ ττ φ φ φ

+ + ++ + += + + +
+ + +

(9) 

Similarly, a multiwindow version of the standard S-
method, i.e. the Hermite S-method, has been introduced as a 
convolution of Hermite based STFTs [18]: 
 

1
*

0
( , ) ( ) ( ) ( , ) ( , ) ,

K
k k k

k
MSM t P d t STFT t STFT t d

q
w q w q w q q

-

=
= + -å ò  (10) 

where ( , )kSTFT t w is the STFT calculated by using the k-th 
order Hermite function ( )k tY . The spread factor for 
multiwindow S-method contains only half of the terms that 
exists within the spread factor of the multiwindow 
spectrogram.  
 Although the multiwindow approach has been derived by 
using the concept of conditional mean frequency, it can be 
used for radar signals considered in this paper. Namely, the 
experiments show that the multiwindow S-method may 
additionally reduce the inner-interferences and noise, and 
thus, with only a few window functions it produces slightly 
better representation than the standard S-method.    

III. APPLICATION OF THE TIME-FREQUENCY ANALYSIS IN 
HUMAN WALKING CHARACTERIZATION 

 
Here, we consider the problem of signatures extraction that 

would allow one to distinguish between the three different 
types of human gait described in the Introduction, namely the 
FAM, PAM, and NAM. We, therefore, focus on radar signal 
components corresponding to the arms swinging. We assume 
that the arm motion is pronounced in the human walking 
which means that the person has a full swing of the arm when 
it is in motion. We also assume that the motion is regular and 
homogenous, in the sense that for FAM, the two arms are 
moving approximately in the same manner. It means that 
both arms pass by the body (through the P points in Fig 1), in 
opposite directions, approximately in the same moment (the 
time difference t∆ is small). The same holds for the points (M 
in Fig 1) where the arms reach the maximum in both 
directions.  

 
Fig. 1. Main motion – B, swinging arms A1 and A2 

A. Basic mathematical description of Micro-Doppler 
phenomenon induced by the human motion 

 
In the coherent radar applications, the signal is returned 

from the target with a phase change due to the variations in 
range. Different body parts are moving with different 
velocities and thus, produce different shifts. The signal 
returned from the swinging arms may include frequency 
modulation that will produce the sidebands around the body 
Doppler. The received Doppler can be modeled as follows 
[27]: 
 (2 ( )),0( ) j f t ts t Ae π φ+=  (11) 

where A is the reflectivity of the chosen reflecting point, f0 is 
the carrier frequency of the transmitted signal, while ( )tφ is 
the time-varying phase change. For an oscillating/vibrating 
object, 

 4
( ) sin( ).v

v
D

t t
π

φ ω
λ

=  (12) 

The parameter vD  represents the amplitude of vibration, or 
maximum deviation from the center of the motion, and λ is 
the wavelength of the transmitted signal. The corresponding 
induced micro-Doppler frequency is the derivative of the 
phase and is given by: 

 1 ( ) 1 2( ) cos( ).
2 2D v v v

d tf t D t
dt
φ ω ω

π π λ
= =  (13) 

Hence, in this case, micro-Doppler represents the sinusoidal 
function of time at the frequency vω . 

 

B. The classification procedure for real radar signals based 
on the time-frequency analysis 
 
  A features extraction scheme is proposed. It does not 
measure distances as in [6], [15], neither does it apply any 
subspace projection as in [14]. As such, the proposed scheme 
avoids the construction of learning or reference sets, as in 
[17], which could be behind the undesired classification 
performance by these methods. Our method, in essence, 
recognizes that the time-frequency representation exhibits 
some symmetry or anti-symmetry for each type of arms 
swinging. The features extracted are based on the envelopes 
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or the perimeters of the arms depicted in the time-frequency 
domain which is generated using the Hermite S-method. The 
use of the envelops bears similarity to the SVM method 
proposed in [17]. The difference is in the features underlying 
these envelopes and the way it is used and processed by the 
classifier.  

In the first step of this procedure, the strongest components 
corresponding to the main motion (torso and legs motion), 
will be removed. It is obtained by using time-frequency based 
support function defined as: 

  1
0, ( , ( ) ) ( , ) ( , ( ) )

( , )
1, ,

for t B t t t B t
S t

elsewhere
δ ω δ

ω
− < < +

= 


(14) 

where the width of main motion region along frequency axis 
is 2δ +1, and 

 { }( ) arg max ( , )B t MSM t
ω

ω= . (15) 

Here it is assumed that the maximal value is centered, 
which might not be always true. However, even the rough 
approximation of the main motion region is sufficient, since 
the aim is just to remove the relative strong components in 
order to highlight the weaker arms movements. An 
illustration of the region that will be removed by the support 
function 1( , )S t ω  is given in Fig 2. 

 
 

 Fig 2. An illustration of the region corresponding to the main motion 

 
 In order to reduce the influence from other moving parts 
(apart from arms), the additional support function is defined 
as: 

   2
1, ( , ) : ( , )

( , )
0, ,

for t MSM t Thr
S t

elsewhere
ω ξ ω

ω
 < <

= 


 (16) 

where Thr  is an energy floor, while ξ is used to remove small 
noise outside the region with signal components. Finally, 

1( , )S t ω and 2 ( , )S t ω are combined to obtain the resulting 
support function:  
   
 1 2( , ) ( , ) ( , )S t S t S tω ω ω= ∩ . (17) 

The points within ( , )S t ω could be divided into two sets: 
positive frequency points and negative frequency points, 
respectively, above and below the main trajectory (torso 
motion component). If arms are swinging during walking, 
these sets of points describe the envelopes of the swinging 
motion. However, since they are noisy data sets, some 
additional processing is required in order to expose their 

features. Thus, a curve smoothing procedure is applied on 
both data sets. This procedure can be observed as a 
nonparametric local fit that can be done by filtering 
(averaging) or local regression. The smoothness is controlled 
by the span ψ, i.e., by the window width used in the 
smoothing procedure. Here, the procedure based on the 
moving average filter is used and smooth curves i.e., 
modeling functions, are obtained: 

 Φ { } 1
( )( , ) ( )B tS t f tωω >→ , (18) 

 Φ { } 2
( )( , ) ( )B tS t f tωω <→ . 

Note that the parametric modeling can be used, as well. For 
example, Gaussian type of fit (up to the seventh order: a1exp(-
((x-b1)/c1)2)+...+ a7exp(-((x-b7)/c7)2) provides very similar 
results.   

The modeling functions for walking with both arms swinging 
(FAM) and walking without arms swinging (PAM) are 
illustrated in Fig 3 and Fig 4, respectively. 
 

 
Fig. 3. Modeling functions f1 and f2 

 
Let us first consider the following two hypotheses: h1 –

(NAM), h2 – (PAM, FAM). The functions f1 and f2 could be 
generally written as: 

 

 1 1

2 2

( ) ( ) ( ),

( ) ( ) ( ),
f

f

f t B t t

f t B t t

δ ξ

δ ξ

= + ±

= − ±
 (19) 

where δ is a constant defined in (14) to approximate the main 
motion width (2δ+1) along frequency axis, while 1( )f tξ and 

2 ( )f tξ  represent variations with respect to the main motion. 

Note that, 1( )f tξ  and 2 ( )f tξ  are mainly the consequence of 

arms swinging. Otherwise, if no arm swinging is present, the 
variations may appear due to the noise or some legs’ 
movements, and they are quite lower than in the case of arms 
swinging. An illustration is given in Fig 4. Thus, a decision 
rule can be defined as: 

2
2 2

1 2 1 2

1

1 1( ) ( ) ,

h

Thr
f f

t t Thrh

MSE MSE MSE t t
T T

ξ
ξ ξ

ξ
≥

= + = +
<∑ ∑  (20) 

where MSE is the total mean square error, while Thrξ is a 
predefined value of the mean square error. If h2 is true, then 
the two additional hypotheses are considered: h21 – one arm 
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swinging (PAM), h22 – both arms swinging (FAM). If h22 is 
true, the curves f1(t) and f2(t) look “symmetrical” across the 
walking trajectory B(t). Here, the “symmetrical” behavior is 
described as follows: each local maximum on f1 has a 
corresponding local minimum on f2 which is located in time 
vicinity t∆ . 
 

 
 

Fig 4. Signal with no arms movements: f1 and f2  should be on a distance δ 
from B(t) with small variations 1fξ and 2fξ , respectively   

 
Otherwise, the functions f1(t) and f2(t) are “asymmetrical” 

and the hypothesis h21 is true. This classification rule can be 
written as: 

    { } { }
22

1 2

21

max( ( )) min( ( )) ,
h

T

T
h

t
arg l f t arg l f t

t
∆≤

−
∆>

 (21) 

where 1max( ( ))l f t represents the local maximum of f1(t), 

2min( ( ))l f t is a local minimum of f2(t), while Tt∆  is a 
threshold value for t∆ .  

IV. EXAMPLES 
 

Example 1: In this Section, the proposed classification 
scheme is tested on the set of real data collected at the Radar 
Imaging Lab, Center for Advanced Communications, 
Villanova University. The experiments were performed with 
the radar operating at a carrier frequency 2.4 GHz, with a 
transmit power level 5 dBm. The instantaneous frequency 
bandwidth is 70 kHz. The sampling frequency of the original 
signals is 1 kHz. For the calculation of the Hermite S-method, 
the signals are further downsampled by factor of 4. 

The radar data are collected from different human targets. 
Also, the data were collected at angles 0 and 30 degrees with 
respect to the radar's line-of-sight. Three types of human 
motions were considered: NAM, i.e., walking with no arm 
swinging, PAM, i.e., walking with one arm swinging, and 
FAM, i.e., walking with both arms swinging. 
 For all tested signals, the Hermite S-method is calculated 
by using three Hermite functions of the lowest order: k=0,1,2, 
with 512 samples within the windows. The parameter L=3 is 
used to define the width of frequency window P(l). 
Furthermore, the value of parameter δ=6 (approximately 
1.5Hz) is used to approximate the width of signal components 
representing the main motion. The same value is used for all 
tested signals. The approximation of the main motion width 
could be further considered in some future work. 

The energy floor Thr within 2 ( , )S t ω  is obtained 
experimentally and it is set to the value 42 10−⋅  for all tested 
signals. The implementation of the proposed procedure is 
performed by using Matlab 7. The smooth curves f1 and f2 are 
obtained by applying the moving average method with 
smoothing span ψ=45.  

In order to distinguish human walking with and without 
arms, the mean square errors (MSE) are calculated according 
to (20). The results are presented in Table I. The significantly 
lower MSEs are obtained for signals that do not contain arms 
swinging. Thus, according to the results for the considered set 
of signals 20Thrξ = can be used for classification.  

 
 
 
 
 
 

TABLE  I. MSES OBTAINED FOR TESTED SIGNALS WITHOUT ARMS MOVEMENTS 
(NAM) AND SIGNALS WITH ARMS MOVEMENTS (PAM AND FAM) 

 
No arms (NAM) One or both arms (PAM or FAM) 

Signals MSE Signals MSE 
Sig 1 5.1 Sig 9 (1 arm) 69.7 
Sig 2 4.2 Sig 10 (2 arms) 57.5 
Sig 3 16.6 Sig 11 (1 arm) 211 
Sig 4 13.6 Sig 12 (2 arms) 127.8 
Sig 5 13.4 Sig 13 (2 arms) 146.4 
Sig 6 10.3 Sig 14 (1 arm) 112 
Sig 7 5.9 Sig 15 (1 arm) 83.3 
Sig 8 3.2 Sig 16 (2 arms) 46.5 

 
The classification between one arm (PAM) and both arms 

swinging (FAM) is now considered. The results for these 
types of signals are illustrated in Fig 5 and Fig 6. The 
Hermite S-method of signal containing both arms swinging is 
shown in Fig 5.a. The time-frequency signatures, used in the 
classification process are illustrated in Fig 5.b, while the 
corresponding support function is given in Fig 5.c. The 
curves f1 and f2 are given in Fig 5.d. Note that in these 
experiments, the time distance t∆  between the local 
maximum on f1 and corresponding minimum on f2 is around 
20 samples. On the other hand, in the case of walking with 
one arm swinging, t∆  is higher, since both maximum on f1 
and minimum on f2 are from the same arm swinging. The 
Hermite S-method, time-frequency signatures and 
corresponding support function, for walking with one arm 
swinging, are illustrated in Fig 6.a to Fig 6.c, respectively. 
The functions f1 and f2 are illustrated in Fig 6.d. It can be 
observed that t∆ is significantly higher than 20 samples 
(between 100 and 200 samples for the considered signal). The 
minimal and maximal values of t∆  are given in Table II. 
Note that there is a significant gap between the values of t∆  
for one and two arms swinging. The threshold value 

Tt∆ could be set between the lowest min( t∆ ) for one arm 
swinging (Signal 5, value 109, in Table II) and highest 
max( t∆ ) for both arms swinging (Signal 4, value 25, in 
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Table II). Thus, 67Tt∆ = can be used. Also, the mean values 
m and standard deviations σ, for min( t∆ ) and max( t∆ ) are 
given in Table III.  

For each of the two classification procedures the probability 
of error is calculated as follows: 

1 2
1 1 2 2

1 2

1 1 1( ) ( )
4 2 42 2

T

T

T TPerr p P d p P d erfc erfcµ µλ λ λ λ
σ σ

∞

−∞

   − −
= + = + −      

   
∫ ∫ , 

where p1=p2=1/2 and the normal distribution is assumed for 
P1 and P2. The mean values and standard deviations of 
classification parameters (MSE for the first and t∆  for the 
second classification) are denoted as μ and σ, respectively. 
They are calculated from the values obtained in the 
experiments. The parameter T is threshold, which is equal to 
ξThr for the first and ΔtT for the second procedure. The results 
are shown in Table IV.  
 
 
 
 

TABLE  II. MINIMAL AND MAXIMAL VALUES OF t∆ FOR A SET OF TESTED 
SIGNALS  

 

 Angle min( t∆ ) 
in samples 

max( t∆ ) 
in samples 

No of 
arms 

Signal 1 30 19 22 2 
Signal 2 0 0 20 2 
Signal 3 0 2 22 2 
Signal 4 0 5 25 2 
Signal 5 30 7 20 2 
Signal 6 0 2 27 2 
Signal 7 30 109 140 1 
Signal 8 0 100 160 1 
Signal 9 30 120 200 1 
Signal 10 0 115 140 1 
Signal 11 0 125 140 1 
Signal 12 30 140 150 1 

 
 

TABLE III. MEAN VALUES AND STANDARD DEVIATIONS OF MINIMAL AND 

MAXIMAL t∆  
 

No of arms 2 arms 1 arm 

{min( t)}m ∆ in samples 5.83 118.16 

{min( t)}σ ∆ in samples 6.91 13.79 

{max( t)}m ∆ in samples 22.66 155 

{max( t)}σ ∆ in samples 2.8 23.45 

 
 

TABLE IV. PROBABILITIES OF ERROR FOR THE TWO CLASSIFICATION 
PROCEDURES 

 
Classification between NAM and PAM/FAM 

Classification parameter MSE Threshold 
T 

Total 
probability 

of error MSE{NAM} MSE{PAM or FAM} 
μ1  σ1  μ2  σ2 T=ξThr=20 Perr=3.54% 

9.037 5.091 106.77 54.62 

Classification between PAM and FAM 
Classification parameter t∆  Threshold 

T 

Total 
probability 

of error t∆ {FAM-2 arm} t∆  {PAM-1 arm} 
μ1 σ1 μ2 Σ 2  T=ΔtT=67 Perr=0.22% 14.25 10.12 136.58 26.57 
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         a)                  b)                c) 
 

     
                           d)   

Fig 5. Both arms swinging: a) Hermite S-method, b) time-frequency signatures, c) support function, d) functions f1 and f2 
 

 
         a)                 b)                 c) 

    
                           d) 

Fig 6. One arm swinging: a) Hermite S-method, b) time-frequency signatures, c) support function, d) functions f1 and f2 
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a)            b)           c) 

 
d)             e)            f) 

        
g)             h)            i) 

 
Fig 7. A comparison of different time-frequency distributions: a) Hermite S-method, b) Spectrogram, c) S-method; Time-frequency signatures obtained 
by using: d) Hermite S-method, e) Spectrogram, f) S-method; Modeling functions based on the: g) Hermite S-method, h) Spectrogram, i) S-method 
 
Example 2: The advantage of the Hermite S-method over the 
spectrogram and the standard S-method, for the considered 
application, is illustrated in this example.  
The noisy radar signal is considered (white Gaussian noise is 
added), with SNR≈25dB. The considered signal describes 
walking with both arms swinging. The Hermite S-method, the 
spectrogram and the standard S-method are given in Fig 7.a-
c, respectively. The corresponding time-frequency signatures 
are plotted in Fig 7.d-f, while the modeling functions are 
presented in Fig 7.g-i. Due to the noise and lower 
concentration in the case of spectrogram and the standard S-
method some anomalies may appear in the modeling 
functions f1 and f2. Note that by using the spectrogram, some 
of the local maxima could be lost as it is the case with points 
1, 2 and 3 in Fig 7.h. Thus, f1 and f2 are no longer 
“symmetrical”, which leads to the incorrect results.  

Similarly, in the case of the standard S-method, the local 
extremis denoted as 1, 3 and 4 are weak and difficult to 
detect. Furthermore, max( t∆ )≈100 samples i.e., the distance 
between local maximum 2 and local minimum 5 is almost 
100 samples, which is close to the one arm swinging case 
(Table II). However, the experiments show that the 
interferences will be better reduced by the Hermite S-method. 
Consequently, time-frequency representation is improved in 
comparison with the spectrogram and the standard S-method. 
Note that in case of the Hermite S-method, the “symmetrical” 

structure, typical for the case of both arms swinging, is 
preserved, with max( t∆ )=22 samples. The Hermite S-method 
is less error-prone and hence, more suitable for the 
classification procedure.  

V. CONCLUSION 
A simple but yet effective time-frequency based procedure 

for classification of radar signals received from human target 
in motion is proposed. The signatures extracted from the 
time-frequency domain are used to distinguish between three 
different types of human walking, namely, human walking 
without any arm swinging, human walking with one arm 
swinging, and human walking with both arms swinging. By 
using the Hermite S-method, a suitable time-frequency 
representation for radar data analysis is obtained. A good 
concentration in the time-frequency domain provided easier 
extraction of the specific motion features and signatures 
employed in the proposed classifier. The perimeters of the 
arm micro-Doppler signatures are first captured. The follow 
up classification procedure, acting on these perimeters,   
consists of two subroutines: the first one distinguishes 
between walking with and without arms swinging, while the 
second renders a classification between one and both arms 
swinging. The proposed scheme is tested on a set of real radar 
data collected from different human targets and from two 
different aspect angles, and shown to provide very desirable 
classification rates. 
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