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Abstract—We address the problem of detecting building dom-
inant scatterers using a reduced number of measurements with
applications to through-the-wall radar (TWR) and urban sensing.
We consider oblique illumination, which specially enhances the
radar returns from the corners formed by the orthogonal
intersection of two walls. This letter uses a novel type of image
descriptor, named correlogram, which encodes information about
spatial correlation of complex amplitudes of each TWR image
pixel. The proposed technique compares the known correlogram
of the scattering response of an isolated canonical corner reflector
with the correlogram of the received radar signal. The feature-
based nature of the proposed detector enables corner separation
from other indoor scatterers, such as humans.

Index Terms—Through-the-wall radar imaging (TWRI), pat-
tern matching, building dominant scatterers.

I. INTRODUCTION

Sensing through building walls using radio frequency sig-
nals to gain vision into concealed scenes is the aim of
Through-the-Wall Radar Imaging (TWRI) [1]–[4]. The ability
to remotely and reliably detect the presence of humans and
objects of interest through opaque structures has numerous
applications in civilian, law enforcement, and military sectors
[5]. Through-the-wall radar (TWR) obtains two-dimensional
(2D) or three-dimensional (3D) images of the region of interest
behind the front wall by combining the radar returns received
at several different antenna locations along an array aperture,
either real or synthesized.

In this letter, we address the problem of detecting building
interior structures using a reduced number of measurements
for TWRI applications. Doppler signatures or change detection
techniques [6]–[8] cannot be applied since the targets of
interest and clutter are both of the same stationary nature.
Stationary target detection is typically performed subsequent
to image formation [2]. Unlike the majority of the image
domain feature detection methods, the proposed approach
exploits prior information of building construction practices.
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The building layout is usually composed of exterior and
interior walls, which are parallel or perpendicular to each
other. We assume flexibility in radar operation which allows
proper angular illuminations, thereby avoiding the front wall
returns and preserving the corner features created by the wall
junction. This can be achieved using squint beamforming or
broadside beams with tilted aperture [9]. Estimating locations
of dominant scatterers, such as corners, allows the inference
of building interior structure. This same idea was exploited
in [10], [11], where a building feature based approach was
applied to estimate the type and location of different canon-
ical scattering mechanisms considering the availability of the
complete volume of data.

This letter proposes an image pattern matching strategy,
which is based on a novel type of image descriptor, namely,
the correlogram [12]. The correlogram proposed in this letter
encodes information about spatial correlation of the image
complex amplitudes. The basic detection strategy adopted
here is to compare the known correlogram of the scattering
response of an isolated canonical corner reflector with the
correlogram of the received radar returns. The correlation
matching procedure can be applied using compressed obser-
vations. As such, it is a welcome alternate approach to the
L1-norm constrained optimization encountered in conventional
compressive sensing (CS). The feature-based nature of the
proposed detector enables corner separation from other indoor
scatterers, such as humans. Numerical electromagnetic (EM)
data is employed to show that the use of spatial correlation of
complex amplitudes makes the detection performance superior
to that of either using raw signal matching [13], [14] or image
matching [15].

The remainder of this letter is structured as follows. In
Section II, the TWR signal model and the canonical corner
response are introduced. Section III presents the proposed
correlogram based strategy together with other matching tech-
niques for corner detection. Supporting results are provided in
Section IV, and Section V states the conclusion.

II. TWR SIGNAL MODEL

We consider a monostatic N -element synthetic line array.
It is noted that the concept can easily be extended to 2D
and/or bistatic arrays. We assume that the data acquisition is
carried out in an oblique position, as shown in Fig. 1(a), which
significantly attenuates the wall returns and enhances corner
scatterers. Let the nth transceiver illuminate the scene with
a stepped frequency signal consisting of M frequencies. The
response of the scene can be modeled as the sum of responses
from individual scatterers, assuming that the scatterers do not



interact with each other. Thus, the signal received by the nth
transceiver at the mth frequency can be represented as,

y(m,n) =

P∑
p=1

Sp(m,n, φ̄p)e
−jωmτp,n + w(m,n) (1)

where P is the number of corner scatterers present in the
illuminated scene, τp,n is the two-way traveling time of the
signal from the nth antenna to the pth corner scatterer, and
the mth frequency ωm is defined as

ωm = ω0 +m∆ω, m = 0, . . . ,M − 1 (2)

with ω0 and ∆ω denoting the lowest frequency in the band-
width spanned by the stepped-frequency signal, and the fre-
quency step size, respectively. The term w(m,n) in (1) models
the contributions of scatterers other than corners, including the
walls, humans, and possible multipath propagation effects. The
canonical scattering response Sp(m,n, φ̄p) of the pth corner
(dihedral) reflector with orientation angle φ̄p is given by [16],

Sp(m,n, φ̄p) = Apsinc(ωm
Lp
c

sin(φp,n − φ̄p)) (3)

where the variables Ap, Lp and φp,n, respectively, define the
amplitude, the length, and the aspect angle associated with the
pth corner reflector and the nth antenna.

A radar image is generated from the MN observations,
y(m,n), m = 0, . . . ,M − 1, n = 0, . . . , N − 1, using
frequency-domain backprojection as follows. The scene being
imaged is partitioned into a finite number of pixels, Nx×Nz ,
in crossrange and downrange. That is, the scene can be
represented by the complex reflectivity function r(k, l), k =
0, . . . , Nx − 1, l = 0, . . . , Nz − 1. The complex composite
signal, corresponding to the (k, l)th pixel, is obtained by
applying a set of focusing delays, τ(k,l),n, to align all signal
returns from the (k, l)th pixel, and then summing the results
[17],

r(k, l) =
1

MN

N−1∑
n=0

M−1∑
m=0

y(m,n)ejωmτ(k,l),n (4)

Note that the focusing delay, τ(k,l),n corresponds to the two-
way travel time between the nth antenna location and the
(k, l)th pixel. The process described by (4) is performed for
all Nx × Nz pixels to generate the image of the scene. In
essence, backprojection solves the inverse scattering problem
of recovering the unknown scene r(k, l), k = 0, . . . , Nx −
1, l = 0, . . . , Nz − 1, from the radar observations y(m,n),
m = 0, . . . ,M − 1, n = 0, . . . , N − 1.

III. CORNER DETECTION STRATEGIES

This section describes different matching techniques for es-
timation of the locations of the corner scatterer. Corners appear
in building structures as a result of the right angle intersection
between two walls. Recently, overcomplete dictionaries for
sparse representation of corners from compressed observations
have been proposed [13], [14], whose atom coefficients di-
rectly indicate the presence of building features at specific

positions. Alternatively, image-based complex matched filters
were proposed for image feature extraction under full data
volume [15]. We first review these two approaches and then
present the proposed correlogram matching procedure, where
the prior knowledge of the corner scattering model is used as
a correlogram template or reference for corner recognition.

A. Overcomplete dictionary for sparse scene representation
We assume that the corners can be located at any pixel of the

image and all corners have the same orientation angle, which
is determined by the oblique illumination under consideration.
Typically, only a small number of corner reflectors of a
particular orientation are present inside a building. As such,
they occupy only a few image pixels, rendering the scene as
sparse. A dictionary Λ based on possible dihedral locations
can be then introduced with NxNz columns. Each column is
based on the response of a corner located at the corresponding
pixel position. The corner response is modeled following eqn.
(3). The linear relationship between the underlying corner
scattering map, represented by the column vector ν of length
NxNz , and the data measurement vector y of length MN is
given by,

y = Λν. (5)

Consider only Q << MN linear non-adaptive samples of y,
i.e. y̆ = Φy, where Φ is the measurement matrix that defines
the compressed measurement strategy. Then, CS recovers the
sparse vector ν from y̆ by solving the following optimization
problem,

min
ν
‖ν‖1 subject to y̆ ≈ ΦΛν (6)

where ‖ν‖1 =
∑
i |νi|. Several methods are available in

the literature to solve the optimization problem in (6), such
as Basis Pursuit techniques [18]–[20] and greedy iterative
methods [21], [22]. Note that each element of ν directly
indicates the presence of a corner reflector at the corresponding
location.

B. Image-based Matched Filter
In this approach, the reference image, obtained from the

canonical corner data model, is directly matched to the back-
projection image obtained with the observations [15].

Let the complex amplitude values of the illuminated scene
image obtained from the compressed measurements be de-
noted by r̆, and the values of the image corresponding to the
compressed measurements of a canonical corner at position
(k, l) be represented by r̆ref

(k,l). Then, the corner detection
problem can be expressed as,

min
β(k,l)

∥∥∥r̆− β(k, l)r̆ref
(k,l)

∥∥∥2
2

(7)

where β(·, ·) is a weighted corner indication function, i.e., the
non-zero values of β(k, l) indicate the presence of a corner at
the (k, l)th pixel. The solution to (7) is given by,

β(k, l) =
(r̆ref

(k,l))
H

r̆

(r̆ref
(k,l))

H
r̆ref
(k,l)

. (8)



C. Correlogram Matching

We propose the use of the correlogram for corner scatterer
detection. For convenience, we use L∞-norm to measure the
distance between pixels, i.e., we define the distance between
the pixels (k1, l1) and (k2, l2) as max {|k1 − k2| , |l1 − l2|}.
For a reference pixel, each distance defines a set of pixels
equidistant from that pixel. Let the complex amplitudes corre-
sponding to the set of Np pixels located at distance d from the
(k, l)th pixel be denoted as r̆(d)(ki, li), i = 1, . . . , Np. Then,
the correlogram of the (k, l)th pixel is defined as,

γ
(d)
(k,l) ,

1

Np

Np∑
i=1

r̆(k, l)conj(r̆(d)(ki, li)) (9)

where conj(·) is the complex conjugate function. From (9),
we can build the correlogram matrix as [23],

R̂(k,l) ,


conj(γ(d=0)

(k,l) ) γ
(d=1)
(k,l) · · · γ

(d=D−1)
(k,l)

conj(γ(d=1)
(k,l) ) conj(γ(d=0)

(k,l) ) · · · γ
(d=D−2)
(k,l)

...
...

. . .
...

conj(γ(d=D−1)(k,l) ) conj(γ(d=D−2)(k,l) ) · · · conj(γ(d=0)
(k,l) )


(10)

where D determines the dimension of the matrix. Note that
R̂(k,l) is positive semi-definite by definition.

The isolated presence of a canonical corner in the (k, l)th
pixel will generate a particular reference correlogram matrix,
which is denoted as Rref

(k,l). The proposed procedure is based
on a scan which reacts only when the reference scatterer is
present. Based on this assumption, an error function is required
to measure the reference corner contribution contained in the
given sample correlogram matrix of each pixel. An estimate
of the corner intensity level κ(k, l) can be formulated as,

min
κ(k,l)≥0

Ψ
(

R̂(k,l), κ(k, l)Rref
(k,l)

)
(11)

where Ψ (·, ·) is an error function between the two matrices.
One choice for Ψ (·, ·) is the Frobenius norm of the residual
correlogram matrix R̂(k,l)−κ(k, l)Rref

(k,l). The major criticism
of this choice is that it does not preserve the positive semi-
definite character of the residual correlogram matrix. The
manifold of positive semi-definite matrices is a cone, whose
points are connected by exponential paths and only locally
resemble a flat Euclidean space [24]. As such, the Frobenius
norm provides results similar to that obtained with (8).

The residual correlogram matrix must maintain its positive
semi-definite property, since it is still a correlogram matrix.
A more proper detector that best suits the space generated by
correlogram matrices is derived by forcing a positive semi-
definite residual correlogram matrix. The problem can be
formulated as

max
κ(k,l)≥0

κ(k, l)

s.t. R̂(k,l) − κ(k, l)Rref
(k,l) � 0

(12)

If R̂(k,l)−κ(k, l)Rref
(k,l) must be positive semi-definite, so must

be I−κ(k, l)R̂
−1
(k,l)R

ref
(k,l). Thus, using the eigendecomposition

of R̂
−1
(k,l)R

ref
(k,l) defined by UΛUH ,

I− κ(k, l)UΛUH � 0 ⇒ I− κ(k, l)Λ � 0 (13)

where Λ is a diagonal matrix of the eigenvalues of R̂
−1
(k,l)R

ref
(k,l)

and U is the unitary matrix containing the eigenvectors of
R̂
−1
(k,l)R

ref
(k,l). Note that if (13) is satisfied for the maximum

eigenvalue, then it is satisfied for all eigenvalues. Therefore,
the condition that always ensures positive semi-definite resid-
ual correlogram is given by,

λ−1max(R̂
−1
(k,l)R

ref
(k,l))− κ(k, l) = 0. (14)

Thus, the solution to (12) is given by the inverse of the
maximum eigenvalue of R̂

−1
(k,l)R

ref
(k,l). That is,

κM (k, l) = λ−1max(R̂
−1
(k,l)R

ref
(k,l)). (15)

The values of κM (k, l), k = 0, . . . , Nx − 1, l = 0, . . . , Nz − 1
directly indicate the presence of a potential corner at a given
pixel location.

IV. NUMERICAL RESULTS

In this section, we present results based on numerical EM
data. The EM response of a three-room building was generated
with FEKO Geometric Optics solver in conjunction with the
OPTFEKO options [25]. The simulated scene geometry is
depicted in Fig. 1(a). The walls are 20 cm thick and made
of solid concrete with permittivty = 6. A PEC sphere of 15
cm diameter is located at (0.02,4.24)m. A stepped-frequency
signal consisting of 201 frequencies covering the 1 to 2 GHz
frequency band was used for interrogating the scene. An 8-
element monostatic line array with an inter-element spacing
of 53 cm (3.53λ where λ is the wavelength at 2 GHz) was
used. Conventional monostatic operation assumes an antenna
spacing smaller than 0.25λ in order to avoid grating lobes
within the visible region -90◦ to +90◦. Therefore, the antenna
compression rate is ρn = 0.25λ

3.53λ = 0.07.
An oblique illumination of the scene is used to avoid wall

returns while preserving the important corner features. The
angular tilt of the array baseline is 25◦. In this case, only
the upper-left corners of the three rooms are expected to
produce strong scattering responses for most, if not all, of the
antenna elements. The concave sides of the remaining corners
are either facing away from the array or only visible to a
small number of antenna elements. We, therefore, focus on
the detection of these three corners.

The region to be imaged is chosen to be 3.5 (crossrange)
× 3.9 (downrange) m2, centered at (0.11, 4.97) m, and is
divided into 100 × 100 pixels. Fig. 1(b) shows the backpro-
jection image corresponding to the measured scene, using all
201 frequencies. In this figure and all subsequent images in
this section, we plot the image intensity with the maximum
intensity value in each image normalized to 0 dB. Although
the corners of interest are visible in the image (indicated by
white rectangles), it is difficult to discriminate them from other
scatterers and clutter even when the full data set is considered.
Note that the imaged scatterers appear at biased locations
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Fig. 1: (a) Geometry of the simulated scene, (b) Backprojection image of the scene considering the full data volume.

compared to the ground truth. This is because the change in
propagation speed within the walls has not been accounted for
in backprojection.

For corner detection with reduced data, we consider only
101 uniformly selected frequencies. Therefore, the frequency
compression rate is ρf = 101

201 = 0.5. Fig. 2(a) shows the image
obtained with the proposed correlogram matching approach.
More specifically, Fig. 2(a) depicts the values of κM (k, l) for
D = 5. Clearly, the image shown in Fig. 2(a) has detected the
three corners and is less cluttered than the full-data image in
Fig. 1(b). For comparison, Fig. 2(b) and Fig. 2(c) show the
results obtained with the CS-based reconstruction described
in Section III-A and the image-based matching approach
of Section III-B, respectively. Orthogonal Matching Pursuit
[26] was used for CS-based reconstruction, with the total
number of iterations set to 200. Although Fig. 2(b) provides
a relatively clean image with few dominant pixels, some of
the strongest ones are outside the white rectangles indicating
the corner locations. Fig. 2(c) also has higher intensity clutter
pixels compared to that in Fig. 2(a), which underscores the
importance of the positive semi-definite correlogram residual
matrix condition.

The superior performance of the proposed technique in
terms of scatterer discrimination is confirmed by a comparison
of the target-to-clutter-ratio (TCR), provided in Table I. The
TCR of an image I(k, l) is defined as the ratio between the
highest pixel intensity value of the true corner location area,
At, to the maximum pixel intensity value of the clutter area,
Ac, and can be expressed as

TCR(I(k, l)) = 20 log10

(
max(k,l)∈At

|I(k, l)|
max(k,l)∈Ac

|I(k, l)|

)
. (16)

The corner area At contains the highest pixel values of the
different detected corner areas, which are manually selected in
close vicinity to the true upper-left corner positions (11× 11
pixel rectangular box centered at the real corner position).
The clutter area consists of the remaining pixels that are not
included in the detected corner areas. Smaller values of TCR
would increase the chance of misclassifications in subsequent

thresholding-based detection schemes [27], [28]. From Table
I, we observe that the proposed method significantly surpasses
the TCR values of its counterparts for D = 5 and 15, leading
to an enhanced detection performance. The performance of
the proposed method is clearly linked to the dimensionality D
of the correlogram matrix, which should be sufficiently large
to capture the image-domain response of a corner reflector
and small enough not to infringe over neighboring corners.
Increasing D adds more information to the correlogram ma-
trix, resulting in higher TCR values as seen in Table I for
D = 5 and D = 15. However, a higher D not only increases
the computational complexity but also invades neighboring
scatterers, resulting in lower TCR values as seen in Table I
for D = 30.

Method D=5 D=15 D=30

Backprojection 1.48 dB

CS-based reconst. 5.41 dB

Image-based match. 2.66 dB

κM (k, l) 6.11 dB 8.28 dB 0.76 dB

TABLE I: TCR for ρf = 0.50

V. CONCLUSION

In this letter, we developed a correlogram matching corner
detector for TWRI applications under reduced data volume.
The correlogram of the scattering response of an isolated
canonical corner reflector, which is known a priori, was
compared with the correlogram of the received radar image
within a correlation matching framework. Results based on
numerical EM data demonstrated that the proposed method
effectively detects the corner reflectors and outperforms its
backprojection imaging, L1-based reconstruction using over-
complete dictionaries, and image-based matched filter detector
counterparts.
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