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Abstract

An adaptive detection scheme is proposed for radar imagihg.proposed detector is a post-
processing scheme derived for one-, two- and three dimealsidata, and applied to Through-
the-Wall imaging using synthetic aperture radar. The tamgage statistics depend on the target
three-dimensional orientation and position. The statstian also vary with the standoff distance
of the imaging system because of the change in the corresgpisdene image resolution. We
propose an iterative target detection scheme for the casehich no or partial a priori knowledge
of the target image statistics is available. Propertieshef piroposed scheme, such as conditions
of convergence and optimal configurations are introducéx detector performance is examined
under synthetic and real data. The latter is obtained usisgn¢hetic aperture Through-the-Wall
radar indoor imaging scanner implementing wideband defaysum beamforming.

Keywords. Detection theory, Through-the-wall, radar imaging,

I. INTRODUCTION

In synthetic and physical aperture radar imaging appbeeti[1], [2], there is a need
for robust target detection schemes. In many applicatisnsh as Through-the-Wall Radar
Imaging (TWRI) [3], [4], [5], [6], [7], [8], there is generBl a large number of possible
indoor targets which might assume different sizes and shafedditionally, limited signal
bandwidth due to wall attenuation issues [9] does not pélinettarget resolution, rendering
target recognition and detection difficult to achieve. Wieggamining and analyzing images,

it is found that the image statistics, even for the same tamgd background scene, may
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significantly vary depending on the target range and crasge values [10]. A practiéal
detector, applied in the image domain, must then perfornsfaatorily under changing and
unknown target statistics. The changes in target staiftoon presumed or reference values
might be attributed to a change in either the imaging systefand in the imaged target.
The former stems from a change in the receiver noise levelcantt be also a result of a
modification in the system standoff distance [11], whichuicgs different image fidelity and
resolution. The latter, on the other hand, could be a coresempiof unknown target orientation.
These variations induce ambiguities in target image intyasd distribution, rendering prior
knowledge of a reference probability density function {palf the target insufficient for its
detection.

One way to address this problem is the use of constant fédseraate (CFAR) detectors
[12], [13] which aim at providing a constant false-alarmerathile the statistics may be space-
and/or time-varying. The drawback of these approachesaisithportant parameter such as
cell size and guard cell size in cell-averaging CFAR [14]lee percentile in order-statistics
CFAR [12], [15] has to be chosen beforehand, which have agtnmpact on the detection
result. In [10], we presented a target detection approaah ithratively adapts to varying
statistics which has been successfully applied in deteabiotargets behind walls. At the
core of the detector in [10], an image processing step is wéech aims at separating target
and noise data. Improved detection was achieved by repgjatia static two-dimensional
filtering in [10] by morphological operations [16]. Howeyénese filtering operations are not
self-learning and require fixed pre-set values, which matyb®the most suitable for the
underlying image. A procedure of how to choose the optimtrfilg step, given the image
data, is, therefore, required for a full automation of thé&dgon process.

The contribution of this paper is to derive properties ofiteeative detection approach [10],
[16], such as bias and conditions of convergence. Basedignaih optimization approach is
presented to allow for optimal configuration of the iterati¥etector. We consider detection
of stationary targets as opposed to the detection of mowangets [17], [18], [19] where
Doppler shifts can be considered.

The paper is organized as follows. In Section Il, a simpleattee detection approach

is presented. It is motivated and derived for one-dimeraia@ignals. We show that the
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simple iterative detection approach generally providesédil parameter estimates and, 3thus,
does not achieve the required false-alarm rate. In Secfiprnmiorphological filtering is
presented as an extension to the simple iterative deteappnoach. The optimal choice of
the morphological filter is discussed in details. An optiatian algorithm to find the optimal
filtering operation is presented in Section IV. In order tsess the performance of the
presented approaches, simulation results using one diomathsignals are shown in Section
V. Further, to demonstrate its usability in practice, tlezdtive detection approach is applied
to TWRI images in Section VI. Here, the concepts of the predodetector are extended
to two- and three dimensional signals and can thus be apiéd/VRI radar B-Scans or

complete three dimensional TWRI images. Finally, Sectidhpvovides conclusions.

[1. AN ITERATIVE DETECTION APPROACH

Assume a one-dimensional signdh), n = 0, ..., N — 1, which consists of target and noise
samples. The aim is to obtain a binary sighat), n = 0,..., N — 1, which describes the

presence and absence of targets, i.e.

1, target is present at time
b(n) = 1)

0, target is absent at time

The dataz(n) could represent one line or column in a radar image, and, @s, fonsists
of different, spatially isolated regions or groups. Tardetection in the image domain, e.g.,
based on the Neyman-Pearson test [20] can proceed by agseath of the data groups (in
the simple case: target and noise) to be i.i.d. (indeperalehidentically distributed), and by
assigning corresponding conditional distribution fuacs under the null and the alternative
hypothesisp(«|Hy) and p(x|Hy), respectively. Hereby, the likelihood ratio (LRY= is

compared to a thresholdto decide for one of the hypotheses as,

o p(z|Hy) T
R = i) @

where~ can be obtained by setting a false-alarm ratand solving for

o= [ ntd ©
Y
with f1(l|H,) being the likelihood ratio distribution under the null hypesis.
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The problem of using a detector, which is basedpanr| H,) andp(z|H;), is the need for
having accurate estimates of the density functions under ltngpotheses. A possible solution
to this problem, applied in the area of TWRI, is considerefilid], [16], where the detector
still performs under unknown or varying statistics. A blatikgram of a simplified version of
the iterative detection approach, presented in [10], [&8hown in Figure 1. In this approach,
the conditional distribution functionsz|H,) andp(z|H,), are characterized by the parameter
vectorsy,, andd,, respectively. Given a nominal false-alarm ratand initial estimateéQ0 and
QALO, which can be obtained by using the generalized likelihadib test (GLRT) [20], target
detection using the Neyman-Pearson test, as describeduatigq (2), can be performed.
The result of this detection operation is a binary sigifaln), n = 0,..., N — 1, where the
superscriptD stands for 'Detection’. The binary signal can be viewed asst indication
of target and noise samples. That is, it can be used as a maskeooriginal dataz(n),
n=0,...,N — 1, to sort the data into disjoint target and noise sets. A patamestimation
scheme is then applied on the obtained target and noises@i®vide updated parameter
estimates.%1 andém. Such schemes can be based on maximum likelihood estim&ign
The updates are finally forwarded to the detector in ordeibtaio an improved binary signal
bP(n), n =0,..., N — 1. The iteration stops when a vanishing difference betwe&seguent
parameter estimates, elfl, ; — 0, ;_,|| and||d, ;— 0, ;|| or a vanishing difference between
the binary signals, e.d ' [bP(n) — b2, (n)| is observed.

The different steps of the above iterative detection apgr@ae detailed below, using two
arbitrary conditional distribution functiong x| H,) andp(x|H,). It is noted that, given initial
estimatesﬁw andQALO and a pre-set false-alarm rate an initial thresholdy, can be obtained
by evaluating Equation (3).

We assume that the likelihood ratio thresheldcorresponds to a single sample threshold
Go, i.e., the test can also be applied in the sample domaincv% (. This assumption is
true for e.g. two Gaussian density functions with the saméangcoe. This restriction is not

necessary, but simplifies the iterative scheme mathenhasariptions. The target and noise

sets in the initial iteration step= 0, 7, and \,, are disjoint sets of samples, satisfying,

To = {z(n)|z(n) > Bo}; No = {z(n)|z(n) < fo} (4)
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The distributions of the so obtained noise and target daagpressed as,

foo(z) = Ao [(1—e)p(z|Ho) + ep(x|Hy)]; =< fo 5)

fio(@) = Ao [(1—e)p(z|Ho) + ep(x|Hy)]; x> fo (6)

where e denotes the probability of target occurrence atyl, and A, , are scaling factors

fulfilling,
0o Bo
/ fop(l‘)dl‘ = fog(l’)dl’ =1 (7)
/ f170(.f13')d33' = f170($'>d$' =1 (8)
—00 Bo
In the following, the parts of the pdfs resulting from falskerms and missed detection are
defined as,
po () = p(a|Ho); x> o 9)
po' P (x) = ple|Hy); =< G (10)

Consequently, the true noise and target distributjgnsH,) andp(z|H;) can be written as,

el = o [ 20— o) 4yt 1)
ety = ¢ - onfo)| 4 7(e) (12)

Within the j-th iteration of the proposed iterative detection alganttupdated estimate_ﬁ%d

andf, ; are obtained via

0y; =argmax [[ foj(z(n) (13)
0
z(n)eEN;
and
él,jzarg;nax I1 fizn) (14)
= z(n)eT;

The biases in the parameter estimates, i.e.,

E

lim argmax { H (1 —¢)p(x|Hp) + epjuD(:c)}] — 0, (15)

e 0 x(n)eN;
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and

E | lim arg max (1-— e)pfA +ep(z|Hy) p | — 0 (16)

7 awer
are generally nonzero. Further, the difference betweeirtizeand estimated target and noise
pdfs, as demonstrated in Equation (12) are generally dep¢rah the true parameters and
thus cannot be corrected for. Except for overly simplifieciraples, where e.g: = 0, or
where the noise and target pdfs are non-overlapping, theeabinple iterative detection
approach provides biased parameter estimates and, thes, it converge to the desired

probability of false-alarmg.

[1l. THE ITERATIVE ALGORITHM USING MORPHOLOGICAL FILTERING

The valuesp!“(z) and p}'”(x) distort the estimated pdf's and thus lead to biases in the
distribution parameters when applying the iterative detacscheme, we seek methods which
eliminate these biases. Since neither the true distribyparameters nor the percentage of
targets and noise in a signal are known, an analytical ravefghe bias cannot be achieved.
Below, we apply morphological filtering as means to mitigtte errors in the target and

noise pdfs [16], [22].

A. Morphological Filtering

When the radar cell size is smaller than the targets spattaht target samples would
appear in groups forming target objects, whereas noise Isanop high intensity will not be
necessarily adjacent. In this respmﬁ{‘(:p), which mistakenly expands the target Setalso
truncates the noise s@f;. This expansion comprises high intensity pixels that aotated
and non-contiguous. On the other hapd,” (x), which truncates7;, and at the same time
mistakenly expandsV,; comprises grouped contiguous target pixels with low intgnn
radar imaging, the target image intensity decreases frenteéhter of a target object towards
its rim [23]. This decreasing depends on the properties efsystem point spread function,
as high resolution systems lead to sharp images. As suclsatin@les inherent tpyD(x)
should be sought at the edges and boundaries of the imaggsd. tar

The above properties are key in the design of the filteringaipm as part of the iterative

detection approach. Lét'“4(n) and b™P(n), n = 0,..., N — 1 denote the binary signals,
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. : : . . 7
resulting from the false-alarms and missed detectionperively, as described by ™ (x)

and pP(z). Then, similarly to Equation (12) we can write
vP(n) = b(n) + "4 (n) —0MP(n), n=0,...,N—1 (17)
The filtering operation/(-) should then satisfy
V(P (n)) = b2 (n) — v (n) +bMP(n) = b(n), n=0,..,N—1 (18)

The above operation entails removing and adding the bingnaks representing false-alarms
and missed detections, respectively. We apply morphadbditering [16] for finding both

binary signalsh®“(n) andb?(n), n = 0,..., N — 1. The basic morphological dilation and

’ QFA QMD

erosion operations (see e.g. [24], [22]) are used for thipgse. Letb, b” and
be the N x 1 vector representations &fn), v”(n), b¥4(n) andb™?(n), n = 0,..., N — 1.

Mathematically, the dilation operation can be described by
b® E = {z[[(E").Nb] Cb}, (19)

The variableFE is referred to as the structuring element &g, is its translation by point
z. The reflection ofFE, i.e., the part of the signal being covered by the structugtement
is denoted byE". The variablez marks the origin of the structuring element. The erosion
operation betweeh and the structuring elemetit is defined by all positions of where the

structuring element is completely containedbinFormally,
b6 E = {2|(E). Cb}. (20)

In Equations (19) and (20), we applied set operations, vigweach vector as a set of
ordered elements. We further define the morphological oggihe £ as an erosion followed
by a dilation operation. The basic morphological operatiare illustrated in Figure 2, where
a structuring element of sizeis used. In the following, morphological opening is empldye
to identify and eliminate the distorting signéfi. Hereby, we consider the detected signal

bP consisting of a finite number of non-overlapping target anise objects, i.e.,
K
” =" 0P, (21)
k=1
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with O being thek™ object inb” and K being the total number of objects it AS
indicated by Equation (17} consists of all noise samples or objectth Thus, with an

adequate structuring elemertty,

K K
bPoEp, = (WPeEp)@Ep=) Ofokp=)Y (OfeEp)&Ep (22

k=1 k=1
Of cEp = 0, Vk where|Ep| > |Of] (23)
Of o Ep =~ OF ,Vk where|Ep| < |07 (24)
V™ = > 0P with Po= {k | |Ep| > |0} (25)

peP

VWoEp ~ b”—p"™ (26)

with |Ep| and |OP| being the length of the structuring element and thth object, respec-
tively. An example of the application of Equations (22)-(2§ illustrated in Figure 3. We
consider a binary signaP’ that consists ofC = 6 objects, three target and three noise objects.
By choosing a structuring element as defined by Equation, (22) the one with the size
of the smallest target object (in this cadde,| = 3), the morphological opening successfully
eliminates all noise objects and leaves all target objectdtered.

The estimation of the truncating signidf” can be accomplished via a dilation operation
with an adequate structuring elemehit. The dilation extends the objects remaining in the
signal (ideally only target objects) attempting to encosspthe pixels located at the target

image boundaries. Formally,

Therefore,

V(") = (b” o Ep) ® By ~ b” — p"* 4+ pMP (28)

as required by Equation (18). The block diagram of the itesatiarget detector using mor-
phological operations is depicted in Figure 4. It is noteat tihe difference between Figure

4 and Figure 1 is the inclusion of the morphological filteriafter the detection operation.
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B. Conditions for Convergence

Having discussed the nominal behavior of the filtering stbp, conditions under which
V() in combination with the other steps of the iterative aldoritwill lead to convergence
towards the true distribution parameters should now be &ednWe consider a signalin),
n=0,..,N —1, with NV, noise samples and; target samples such thaf, + N; = N.

In order to determine the conditions of convergence, it isngrily important to know
the limitations on the size of the structuring eleméfs. The size|Ep|, which represents
the length of the structuring element for the one-dimerai@ase, must be determined in

consideration of the pixel-allocation errgrthat is likely to incur. This error is given by,
n = C('ED| +a\ED|+1 +a\ED\+2 + .. (29)

where « is the false alarm rate. It is measured by the probability fof|, or the relative
number of noise samples having an intensity higher than #terohined threshold. Given
a < 1, the above expression can be simplified by only considetweglargest term in the
sum, i.e.,;n ~ al?»l,
The N, noise samples can further be divided into three possibleoouss:
« The number of samples, which correctly have been detectedias, N
« The number of samples, which represent false-alarms witiméeld spatial extent of
maximum|Ep| — 1, denoted asVg
« The number of samples, which represent false-alarms witbatiad extent larger than
or equal to|Ep|, which will be referred to as allocation errors, denoted\as
Clearly, the equalityVy = N+ Nr+ N4 holds. The morphological opening with structuring
elementEp will successfully eliminate théVy: samples with limited spatial extent, whereas
it will fail to remove the N, allocation errors. Thus, in order to fulfill Equation (23) ame

iteration, the total number of allocation errors must bellmghan one. Therefore, we require
NAST](NQ—‘ED|+]_)%T]NQ<]., (30)

with Ny — |Ep| + 1 being the maximum (the targets being located at the edgeeo$dhne)
number of locations where a false alarm could occur. For Kficgtion, we invoke the

assumptionN, > (|Ep| — 1), which is valid in most images encountered. Accordingly,
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we can replace the teriV, — |Ep| + 1 by Ny, as in (30). The upper constraint on the ﬁ?oper
value of E'p is given by,

|Ep| < min{O]}, Vk, (31)

with O] being thek" target object inb”. This limitation can be deduced from Equation
(24). Obviously, missed detection may also lead to the meg# of the iterative approach to
detect all targets. However, as stated above, it can be ®gdtat pixels subject to missed
detections appear at the image boundaries of targets. foherd is unlikely that these errors
are too significant to compromise the detection of a spgt@aitended target.

Denoteg as the true sample threshold resulting from Neyman-Peagdoen exact knowl-
edge of the distribution functions under the null and akée hypothesis. Then, for an initial
thresholdj, < 3, associated with the initial parametdﬁrogo, QALO, convergence will occur, by
definition, if more noise samples are eliminated by the dperd(-) than when the initial
threshold assumes the correct valuelf «, is the false alarm rate resulting from a low

thresholds,, then the new allocation erray, becomes

|Ep|+1

o = a4 alPPIHY 4 glFrlve (32)

It follows from Equation (29) that, for the samé&p|, ny > 7, sinceay > « for G, < 5.

With no > n, the filtering operation will not always yield a convergerniowards the true
parameters in all cases, since it is conceivable that ditotarrors persist through the iterative
scheme. Three possible cases can be identified:

1) The number of errord/, is zero. Thus, all noise samples are successfully removed an
the true parameters can be estimated from the resultingIgetisis case, the number
of false-alarms is reduced froii to 0 and convergence occurs after the first iteration.

2) Allocation errors occur, buv 4 is smaller than the number of false alarms with a limited
spatial extent, i.eN4 < Np. In this case, the operatioi(-) will yield an improvement
of the estimated distribution parameters, but not the tarampeters, as the number of
false-alarms is reduced frolv4 + N to N4. Further iterations will be needed until
convergence towards the true parameters occurs. The neshtiid3; will be higher
than or equal tgj,, thus yielding a new false alarm ratg with o < a; < ay.

3) Inthe caseV, > Ny convergence towards the true parameters will generallpoatr.
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Under this condition, the new parameters will result in a rilesesholds; < [, whiclﬁ
will elicit even more allocation errorg, > 7, until all noise is potentially classified as
a target.

For the case that, > [, similar conclusions to those discussed above can be drawn.
this case a false-alarm ratg that is lower than the presetis obtained, possibly leading to
allocation errors in the target set. As shown above, agasetbases can be considered

« No target allocation errors occur. In this case, the mompdiokl dilation via E; will

restore the target signal in one iteration.

« Target allocation errors occur, but their number is smahan the number of unaffected

target samples. In this case, a new iteration yiglds< 5, and thusa > a; > ay

. More target allocation errors occur than the number of @téd#fd target samples. In

this case, convergence towards the true parameters ggnertinot occur. The new
thresholds; will be even higher tham,, yielding «; < ag. Thus, further iterations will
eliminate target objects, until all targets are potentialbssified as being noise.

The practical implication of this section is that the initparameters of the iterative
algorithm should be chosen pessimistically, but not exicegyg pessimistic, since this could
lead to the third case described above. Details on how lipeieameters, or, equivalently, an

initial binary signal can be chosen will be provided in SewctVI.

IV. OPTIMIZING THE STRUCTURING ELEMENT

As shown in the previous Section, the expected number of-pikacation errors{ Ny -7)
in the processed signal is dependent on the size and, in feeofdwo or three dimensional
images, shape of the structuring elements. A structuriegneht of the same size and shape as
the smallest target object will minimize the expected ertinus rendering the best possible
estimation of the parameters under the null and alternatpethesis. Unfortunately, it is not
always valid to presume any a priori knowledge of the size simape of target objects in
the scene of interest. For this reason, a method for findiagtiirect structuring elements is
vital for the success of the iterative detection approach.

In [16], we have suggested that the detection of non-conemsitie estimates fob’!

and " can be used for the purpose of finding an appropriate stingtielement. The
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employment of a non-ideal structuring eleméns will by definition lead to truncated and/or
distorted target and noise data sétand A\ respectively.

Here, we propose to detect such corrupted sets via a corapavfsparametric and non-
parametric density estimators. We compare a parametricemedy., p(:c\HO;QAQ ;) and a
non-parametric modelf, ;(x), where the index stands for the/-th, i.e., final iteration. This
comparison, which can be based on the MSE, is suitable facteyy non-comprehensive
estimates fob” andb™?, if the following inequality holds true (the noise set is sitered

exemplarily):

E [(fo(@) — pl(alHo; 6))?] < B |(fo(2) = plw|Hoi 0y 1))? (33)

Here, fy(z) denotes a non-parametric estimate of the noise pdfpéndiy; 6,) denotes the
parametric density under the null hypothesis, given the parameterg,. f; ;(z) is a non-
parametric density estimation of the noise at th¢h, i.e., final iteration, as detailed in
Equation (5), wherea@(:c\Ho;éovJ) is the parametric density under the null hypothesis given
the parameter estimates from thiethe iteration step. The non-parametric density estimator
has to be chosen in accordance with the postulated ineguélEquation (33). In this light,
we suggest the employment of a kernel density estimator 425]
N-1
1 x —x(n)
= — K|{——= 4

o) = g 2 () (34

with K (-) andh being the kernel function and bandwidth, respectively. Bfjrdtion, p(z|Hy; 6,))

describes the true distribution of with the true set of distribution parametefls. The

expected value of,(z) being

Bl = [ 35 (S5L) plolHus o)y = plel i) (@)
and
i, N Vaslfo(@)] = plalfiy) [ K0y (36)

Proof and conditions for Equations (35) and (36) are preskemt [26]. The MSE is thus
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lower bounded by the left side of Equation (33), since e

lim B [(fol) — ple|Ho: 6,)%] = 0 (37)

It remains to show, that the MSE for agny(x) resulting from the sed; is asymptotically
greater than zero. The non-parametric distribution modiehe underlying dataV; can be

expressed as follows

ZL‘—bFA

fo(z) + % > K <7}‘L] (n))

{n|bF4(n)=1}

Ly K(xbﬁ%)],

fo,J(«%’)

(38)

{nlb}'P (n)=1}

with NF4 and N}P being the number of detected samplesbifi'(n) and b3 (n), n =
0,..., N — 1 respectively. Considering Equation (35), the expectedevaf Equation (38) can

be written as

E[fo.s(x)] = a1p(x|Ho; 0y) + az fra(x) — asfurp(), (39)

with a4, ..., a3 being scaling factors anfi-4(x) and fy;p(x) being the distribution functions
of the remaining distorting and truncating sets. As per defim fr4(z) has no impact below
the respective threshol@, and on the other hand,p(x) has no impact abovg;, the case

that
asfra(x) — asfup(z) ~ p(x|Hy; 0,) (40)

can practically be excluded. In any other case, there wilitexBias|[fy s ()] = E[fo.s ()] —

p(x|H0;QAO7J) greater than zero and therefore
dim E | (fo.s(2) = pla[Hoi 0y ,)*| > 0 (41)

With the validity of Equation (33) shown, the structuringerelent may be optimized by

repeating the iterative detection procedure with structuelementsty, s = 1,...,.5, and
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then choosing

Ep = argmin G (MSE |J,(2). plal H: 8, )| MSE (o, (@). plal Ho: )| | E3) . (42)

with G(-) being a function merging the mean squared errors computethéoiteratively
estimated target and noise densities. The exact techniguerging the MSEs can be chosen
according to the measure of confidence regarding the validithe noise and target density
class models, respectively. If, for example, one is fainfodent that noise stems from a
Gaussian distribution, but less confident about the targesitly class, then it is advisable to
design a functionz(-), which assigns a greater weight to the MSE resulting fromnthise
models. Furthermore, because its variation is not confineddividual pixels it may be of
advantage to vary the false alarm ratenstead of the structuring elemeht, as suggested
by Equation (42). For the one-dimensional case the reldigiween the two is expressed in

Equation (29).

V. SIMULATION RESULTS

In order to assess the performance of the proposed methachgly)

« The simple iterative detection approach (without filterstigp)

« The iterative detection approach using morphologicalrititg(static structuring element)

« The iterative detection approach using an adaptive mooggjeal filtering
we consider a three-dimensional scene description, astdegn Figure 5. The signal is com-
posed of three nonoverlapping square-sized target objelitsving a Gaussian distribution
and noise following a Weibull densities being present inrdreaining scene. Gaussian (target)
and Weibull (noise) have been chosen to mimic 3D TWRI imagkghvhave empirically
been shown [10] to follow these distributions. We note that assumption in Section Il that
the likelihood ratio threshold,, corresponds to a single sample threshgidis not valid
when considering a Gaussian and Weibull density for maagelthe two hypotheses. It is
thus considered as an approximation in the following.

The iterative detection approach can easily be extendedtonZges by separating a 3D
image into a set of 2D images where two-dimensional morgho#b operations can be used.
Given the TWRI application in mind, this would correspondat@eparate treatment of each

radar B-Scan.
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The improvement of the parameter estimates with the nunfbtarations using the iterative
detection approach without and with morphological filtgrisa delineated. The parameters of

the distributions under the null and alternative hypothese:

K 1 10
b= " | = L, = LN (43)
)\0 2.5 01 0.5

wherer, and )\, denote the scale and shape parameter of the Weibull distihuespectively.
Figure 6 (a)-(d) shows the development of the parametematsio, /i1, Ao, 1 for j =
1,...,20 iterations of the proposed detectors using the NeymansBeatest for detection
with a false-alarm rate ofv = 0.05. The results were obtained usiig00 Monte Carlo
simulations. The parameter estimates shown atOtheiteration correspond to the initially
chosen parameters and are identical for both methods. Thetiging element is of length
|Ep| = 10.

As evident from Figure 6 (a)-(d), a considerable bias isbiesivhen choosing the iterative
target detector without morphological filtering. This hiagich has been derived in Section
Il (Equations (15) and (16)), is caused by the inability toawer the pdf's undefi, and H;
without an additional filtering operation. Bias in the pasar estimates will ultimately lead
to a detector which does not provide the required falsevalate. On the other hand, the
iterative detector using morphological filtering quicklgnverges towards the true parameters
(in this simple example, convergence after= 3 — 4 iterations is achieved).

The choice of an optimal structuring element, as proposeskition 1V, becomes crucial
when varying statistics are considered. We therefore densa similar scenario as above,
except thatx, is varied betweer) and 20. As a performance measure, the mean absolute
deviation (MAD) of the obtained binary signéf after J iterations and the true binary signal

b is used as

MAD (b7 b) = % > b7 (n) = b(n)] (44)

where a vectorized notation of the 3D image is used for suiipliThe MAD using the
scenario described above is depicted in Figure 7. It can lsereed, that the proposed
detector without filtering operation (dotted line) has astant error, even for sma#l,. This

corresponds to the bias in the parameter estimates desaiibb®ve. The iterative detector
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with a static structuring element,| = 10 x 10 (dashed line) shows an improvemen%,6 but
has an early breakdown point a§ ~ 6, where the chosen, static structuring element is no
longer able to separate target and noise data. The samenstdat@olds when choosing a
static 10 x 10 median filter as in [10] (solid line). Here, the detector athg breaks down

at ko ~ 5. When using an optimized structuring element (solid linéhvdotted markers), as
proposed by Equation (42) (in our examplg, ) is just a simple averaging operation), we can
accept a far higher noise level,~ 8. Beyond the breakdown point, we observe occurrence
of the scenario which was analytically derived in SectidrBll In this case, the allocation
error is so large that convergence towards the true parasned@not be achieved and either
all samples are classified as being noise or target exclysives further noted that in high
SNR, the adaptive approach does not yield improvement dwerstatic approach. This is
due to the fact that for a smadl,, only few false alarms will occur which are likely to be
isolated. Thus, any reasonably chosen structuring eleofesize |Ep| > 1 x 1 will perform
equally well in the elimination of these outliers and an d@d@pstructuring element size will
not enhance the detector performance.

We further demonstrate the performance of the two-paran@&CFAR detector (dash-
dotted line), derived in [15]. As proposed by Rohling [12ktRA5th percentile has been
used to obtain the image threshold. The OSCFAR detector slaoeontinuous degradation
as opposed to the breakdown-point behavior of the iteraygroach. However, for most
scenarios it also shows a worse performance in terms of MAD.

We note that the choice of the structuring elemgntused to restore missed detections is
more problematic. The optimal configuration depends ondlget characteristic and system
point spread function. A square static structuring elen@nsize 3 x 3 is chosen which
effectively enlarges each remaining target object by omxelpit shall, however, be noted
that one could consider a joint optimization bf, and £, which will be a subject of future

research.

VI. EXPERIMENTAL RESULTS

In this Section, the proposed detectors are applied for éection of stationary targets in
Through-the-Wall Radar Imaging (TWRI) applications. Wensidler an experimental setup

depicted in Figure 8. Three metallic objects (sphere, dddeand trihedral) are placed on
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high foam columns at different heights behind a solid cotectsock wall. The respective
dimensions are shown in Figure 9. The wall parametersdate 5.625in (wall thickness)
and e = 7.66 (dielectric constant). For imaging, & x 57 element planar array with an
interelement spacing df.875:n was used, which has been synthesized using a single horn
antenna. The array is centered at a heightt&f. above ground. The scene is illuminated
using a stepped-frequency continuous-wave (CW) signdl wibandwidth of2.4 GHz and

a center frequency of.9 GHz, where801 frequencies with a stepsize 8fMHz are used.

We note that the following conclusions are drawn based omxtansive study performed on
several data sets, but these cannot be reproduced due ® Ispdations.

There exist many approaches for the actual beamforming agenfiormation process. This
includes tomographic approaches [27], [28], [29] where ithage formation is seen as an
inverse scattering problem and differential SAR [30]. lmsthaper we restrict ourselves to
wideband delay and sum beamforming [31], [32], although waentain that the proposed
detectors are postprocessing methods and as such are ndéepeof the actual imaging
process.

We consider known wall parameters for beamforming. Refere33], [34], [11] describe
methods on how to estimate unknown wall parameters.

For beamforming, we consider two possible schemes for rahasignal reflections from

walls.

« Background-Subtraction: In this case, we assume that esgdpe measurements are
available. The received signal amplitudes obtained whemihating the empty scene
can thus be coherently subtracted from the signal ampbtotd¢ained when illuminating
the filled scene.

« Wall Removal: In practice, empty scene measurements aga ofit available. We follow
the simple approach from [35] where a spatial notch filtersisduto remove wall effects.

The spatial filter used is given by

» 1—e v
H(ejw) = m (45)

where a notch widthy = 0.8 is chosen. Further, as proposed in [35], two-way filtering

and downsampling of the antenna outputs by a factdr isf implemented.
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Typical B-Scans (2D images at particular heights of int@ressulting from the wideband
beamformer using raw data, background subtraction and remlbval are shown in Figures
10(a)-(f). Two different heights are considered, namely, in and +25 with respect to the
array center. Here, the objects of interest are marked ki @dohedral), dashed (dihedral) and
dotted (sphere) circles. Clearly, the images in Figure Y1&a(b) obtained from the raw data
without preprocessing to remove the wall reflections arg ekrttered and cannot be used for
detection. With background subtraction preprocessingp@fdata, the image at lower heights,
e.g. at—b5in, has high clutter at approx:2, ..., —6 ft crossrange and, ..., 12 ft downrange
(see Figure 10(c)). Also, as the objects in the scene areglacdifferent heights, they may
only be visible at specific B-Scans, as evident from Figur@)l0Orhe dihedral has a large
radar cross-section and was visible in practically all Ba&cfrom—10, ..., +30in. The metal
sphere and the trihedral, on the other hand have a ratheft sadar cross-section and are
only visible within a small range of B-Scans. When using timepée spatial filter based wall
removal technique, a large increase in clutter can be obdeas shown in Figures 10(e) and
(f). It shall be noted that the clutter is comparable to omes&onger than the targets which
will affect subsequent detection results.

The proposed detector, derived for 1D signals, can easilyiended to 2D signals
by choosing two-dimensional structuring elements for rhotpgical filtering and applying
pixelwise detection, as detailed in e.qg. [10], [16]. By appd the detector to a set of B-Scans
obtained at different heights, finally a 3D binary repreagah of the scene can be obtained.

As shown in [10], [16], the usage of a Weibull distributiorr fo(x|H,) and a Gaussian
pdf for p(x|H,) are appropriate choices when considering the above mewtisetup for
TWRI. Again, the Neyman-Pearson test has been used as aadetebere the likelihood
ratio threshold is obtained by integrating over the pdf & litkelihood ratio under the null
hypothesis, per Equation (3). For initialization, instexfdusing initial parameter vectors,
and Ql, which may be difficult to discern in practice, we proposengsan initial binary
image instead, which is easier to obtain. We choose thealiiinary imageBZ (n, m),
n=0,..N—1,m=0,...M—1as

1, X(n,m)>medX)

BP(n,m) = (46)
0, X(n,m)<medX)
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whereX (n,m),n=0,...., N—1,m = 0,..., M —1 is the B-Scan under detection and rﬁk’]ii
is the median image value. Thus it is guaranteed that in teeiferation, half of the image
values are assigned to the target &etind the other half to the noise s¥}. This simplified
the estimation of the initial (truncated and distortedyé&drand noise distributions.

The 3D detection result using the iterative detector withaéisstructuring element of size
3 x 3 is shown in Figure 11(a) for background-subtracted imageflse-alarm rate ofl %
has been chosen. It is evident that the chosen structuramgesit is suboptimal. Although the
circle (dotted ellipse) and the trihedral (solid ellips@ncbe detected, the dihedral (dashed
ellipse) can hardly be separated from the large amount dfeclpresent in the respective
image region.

For the iterative detector using adaptive morphologictriihg we chose the optimization
procedure as presented in Section 1V, whereby we restraieselves to quadratic structuring
elements for simplicity. The corresponding 3D detectiosute (again, using background-
subtracted data) is shown in Figure 11(b). Now, all threeectisj can clearly be detected
and the amount of clutter is strongly reduced to a small velush approx.8, ..., 10 ft.
downrange and-5,... — 3 ft. crossrange. The iterative detector adapts itself toinhage
statistics which are varying within the scene. This is desti@ted by plotting in Figure 12 the
noise statistics (shape and scale parameter of the Weilstidibadition), the chosen structuring
element size and the output of the goodness-of-fit (GOF)timmqEquation (42)) for all
heights—10, ..., +30in. It is clear that the structuring element automaticallyiesbetween
4 x4 and7 x 7. The noise is stronger in the upper and lower region of the@e and is also
varying its shape (Note that a shape paramete? obrresponds to a Rayleigh distribution
which would not be an appropriate choice here). Furthehaltl®e noted that in the middle
region of the 3D scene the GOF function yields relativelygéawalues which implies that
the assumed models for target and noise distributions drepsinal. Improvements could be
obtained using resampling schemes such as the bootstrppiigh may turn out especially
useful for small data sizes.

The 3D detection result when using the OSCFAR detector isctegpin Figure 13 for
comparison. Trihedral and sphere can clearly be detectedever it is hard to discriminate

the dihedral from its surrounding. Further, a strong amaintlutter at approxs, ..., 10 ft.
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downrange and-5, ... — 3 ft. crossrange deteriorates the detection.

The 3D detection result when using the wall removal procedwom [35] is depicted in
Figure 14(a) and (b). As expected by the strong amount ofecllgft in the radar images
(Figures 10(e) and (f)), detection becomes much harder wbaeondary data for background-
subtraction is not available. This holds for the propose@ater as well as for the OSCFAR
detector. The metal sphere, which has a relatively smadirraibss section is no longer visible.
The dihedral and trihedral can still be detected, but areesltidd in strong clutter. We note
that wall reflection removal methods which estimate the wathmeters and proceed to model
wall EM returns and subtract them from the data can lead teibetmoval of clutter [8], [37]
compared to spatial filtering which does not require esionadf the wall EM characteristics.
We maintain, however, that the proposed detection schempastprocessing operation which
can be applied with any wall EM removal techniques.

The computational complexity of the proposed approachaeteisrmined by the number
of iterations.J and structuring elementS. As the computation time for one iteration is
comparable to that of the OSCFAR, the proposed approacleases in complexity by a
factor of J - S, which would typically be around — 5 when using static morphological

filtering, and approx20 — 30 when using the adaptive morphological filtering.

VII. CONCLUSION

An iterative target detector has been presented which adasptf to different and unknown
image statistics. We have shown that there is need for ati@ocialimorphological filtering step
to reduce the bias in parameter estimation, which typiaalyurs when using a simple version
of the detector. Properties of the proposed detector sucbrations for convergence, optimal
choices of the structuring element for morphological fittgrand practical issues such as the
choice of initial parameters were examined. The propostettle was applied to synthetic 1D
data to demonstrate its performance. It was applied foetatgtection in Through-the-Wall
radar imaging, where the image statistics vary with spaeek&round-subtraction as well as
a wall removal method based on a spatial notch filter have eestigated. When using the
proposed iterative detector with an optimum choice of tmecstiring element, targets in the
case of background-subtracted images have been cleadgtddtwhich enhances subsequent

steps such as feature extraction or classification of targdten considering simple wall
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removal techniques without knowledge of the backgroundy@g amount of false alarms

deteriorates the detection results.
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Fig. 1. Block diagram representation of the simple itemtietection approach

Fig. 2. Basic morphological operations
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Fig. 3. Choosing the adequate structuring element

Fig. 4. Block diagram representation of the iterative d@ecapproach using morphological filtering
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