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Abstract

An adaptive detection scheme is proposed for radar imaging.The proposed detector is a post-

processing scheme derived for one-, two- and three dimensional data, and applied to Through-

the-Wall imaging using synthetic aperture radar. The target image statistics depend on the target

three-dimensional orientation and position. The statistics can also vary with the standoff distance

of the imaging system because of the change in the corresponding scene image resolution. We

propose an iterative target detection scheme for the cases in which no or partial a priori knowledge

of the target image statistics is available. Properties of the proposed scheme, such as conditions

of convergence and optimal configurations are introduced. The detector performance is examined

under synthetic and real data. The latter is obtained using asynthetic aperture Through-the-Wall

radar indoor imaging scanner implementing wideband delay and sum beamforming.

Keywords: Detection theory, Through-the-wall, radar imaging,

I. INTRODUCTION

In synthetic and physical aperture radar imaging applications [1], [2], there is a need

for robust target detection schemes. In many applications,such as Through-the-Wall Radar

Imaging (TWRI) [3], [4], [5], [6], [7], [8], there is generally a large number of possible

indoor targets which might assume different sizes and shapes. Additionally, limited signal

bandwidth due to wall attenuation issues [9] does not permitfine target resolution, rendering

target recognition and detection difficult to achieve. Whenexamining and analyzing images,

it is found that the image statistics, even for the same target and background scene, may
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significantly vary depending on the target range and cross-range values [10]. A practical

detector, applied in the image domain, must then perform satisfactorily under changing and

unknown target statistics. The changes in target statistics from presumed or reference values

might be attributed to a change in either the imaging system or/and in the imaged target.

The former stems from a change in the receiver noise level andcould be also a result of a

modification in the system standoff distance [11], which induces different image fidelity and

resolution. The latter, on the other hand, could be a consequence of unknown target orientation.

These variations induce ambiguities in target image intensity and distribution, rendering prior

knowledge of a reference probability density function (pdf) of the target insufficient for its

detection.

One way to address this problem is the use of constant false-alarm rate (CFAR) detectors

[12], [13] which aim at providing a constant false-alarm rate while the statistics may be space-

and/or time-varying. The drawback of these approaches is that important parameter such as

cell size and guard cell size in cell-averaging CFAR [14] or the percentile in order-statistics

CFAR [12], [15] has to be chosen beforehand, which have a strong impact on the detection

result. In [10], we presented a target detection approach that iteratively adapts to varying

statistics which has been successfully applied in detection of targets behind walls. At the

core of the detector in [10], an image processing step is usedwhich aims at separating target

and noise data. Improved detection was achieved by replacing the static two-dimensional

filtering in [10] by morphological operations [16]. However, these filtering operations are not

self-learning and require fixed pre-set values, which may not be the most suitable for the

underlying image. A procedure of how to choose the optimal filtering step, given the image

data, is, therefore, required for a full automation of the detection process.

The contribution of this paper is to derive properties of theiterative detection approach [10],

[16], such as bias and conditions of convergence. Based on this, an optimization approach is

presented to allow for optimal configuration of the iterative detector. We consider detection

of stationary targets as opposed to the detection of moving targets [17], [18], [19] where

Doppler shifts can be considered.

The paper is organized as follows. In Section II, a simple iterative detection approach

is presented. It is motivated and derived for one-dimensional signals. We show that the
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3
simple iterative detection approach generally provides biased parameter estimates and, thus,

does not achieve the required false-alarm rate. In Section III, morphological filtering is

presented as an extension to the simple iterative detectionapproach. The optimal choice of

the morphological filter is discussed in details. An optimization algorithm to find the optimal

filtering operation is presented in Section IV. In order to assess the performance of the

presented approaches, simulation results using one dimensional signals are shown in Section

V. Further, to demonstrate its usability in practice, the iterative detection approach is applied

to TWRI images in Section VI. Here, the concepts of the proposed detector are extended

to two- and three dimensional signals and can thus be appliedto TWRI radar B-Scans or

complete three dimensional TWRI images. Finally, Section VII provides conclusions.

II. A N ITERATIVE DETECTION APPROACH

Assume a one-dimensional signalx(n), n = 0, ..., N−1, which consists of target and noise

samples. The aim is to obtain a binary signalb(n), n = 0, ..., N − 1, which describes the

presence and absence of targets, i.e.

b(n) =







1, target is present at timen

0, target is absent at timen
(1)

The datax(n) could represent one line or column in a radar image, and, as such, consists

of different, spatially isolated regions or groups. Targetdetection in the image domain, e.g.,

based on the Neyman-Pearson test [20] can proceed by assuming each of the data groups (in

the simple case: target and noise) to be i.i.d. (independentand identically distributed), and by

assigning corresponding conditional distribution functions under the null and the alternative

hypothesisp(x|H0) and p(x|H1), respectively. Hereby, the likelihood ratio (LR)p(x|H1)
p(x|H0)

is

compared to a thresholdγ to decide for one of the hypotheses as,

LR(x) =
p(x|H1)

p(x|H0)

H1

≷
H0

γ (2)

whereγ can be obtained by setting a false-alarm rateα and solving for

α =

∫ ∞

γ

fL(l|H0)dl (3)

with fL(l|H0) being the likelihood ratio distribution under the null hypothesis.
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4
The problem of using a detector, which is based onp(x|H0) andp(x|H1), is the need for

having accurate estimates of the density functions under both hypotheses. A possible solution

to this problem, applied in the area of TWRI, is considered in[10], [16], where the detector

still performs under unknown or varying statistics. A blockdiagram of a simplified version of

the iterative detection approach, presented in [10], [16],is shown in Figure 1. In this approach,

the conditional distribution functionsp(x|H0) andp(x|H1), are characterized by the parameter

vectorsθ0 andθ1, respectively. Given a nominal false-alarm rateα and initial estimateŝθ0,0 and

θ̂1,0, which can be obtained by using the generalized likelihood ratio test (GLRT) [20], target

detection using the Neyman-Pearson test, as described in Equation (2), can be performed.

The result of this detection operation is a binary signalbD
0 (n), n = 0, ..., N − 1, where the

superscriptD stands for ’Detection’. The binary signal can be viewed as a first indication

of target and noise samples. That is, it can be used as a mask onthe original datax(n),

n = 0, ..., N − 1, to sort the data into disjoint target and noise sets. A parameter estimation

scheme is then applied on the obtained target and noise sets to provide updated parameter

estimateŝθ0,1 and θ̂1,1. Such schemes can be based on maximum likelihood estimation[21].

The updates are finally forwarded to the detector in order to obtain an improved binary signal

bD
1 (n), n = 0, ..., N − 1. The iteration stops when a vanishing difference between subsequent

parameter estimates, e.g.||θ̂0,j − θ̂0,j−1|| and||θ̂1,j − θ̂1,j−1|| or a vanishing difference between

the binary signals, e.g.
∑N−1

n=0 |bD
j (n) − bD

j−1(n)| is observed.

The different steps of the above iterative detection approach are detailed below, using two

arbitrary conditional distribution functionsp(x|H0) andp(x|H1). It is noted that, given initial

estimateŝθ0,0 and θ̂1,0 and a pre-set false-alarm rateα, an initial thresholdγ0 can be obtained

by evaluating Equation (3).

We assume that the likelihood ratio thresholdγ0 corresponds to a single sample threshold

β0, i.e., the test can also be applied in the sample domain viax
H1

≷
H0

β. This assumption is

true for e.g. two Gaussian density functions with the same variance. This restriction is not

necessary, but simplifies the iterative scheme mathematical descriptions. The target and noise

sets in the initial iteration stepj = 0, T0 andN0, are disjoint sets of samples, satisfying,

T0 = {x(n)|x(n) > β0}; N0 = {x(n)|x(n) < β0} (4)
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5
The distributions of the so obtained noise and target data are expressed as,

f0,0(x) = A0,0 · [(1 − ǫ)p(x|H0) + ǫp(x|H1)] ; x < β0 (5)

f1,0(x) = A1,0 · [(1 − ǫ)p(x|H0) + ǫp(x|H1)] ; x > β0 (6)

where ǫ denotes the probability of target occurrence andA0,0 and A1,0 are scaling factors

fulfilling,

∫ ∞

−∞

f0,0(x)dx =

∫ β0

−∞

f0,0(x)dx = 1 (7)

∫ ∞

−∞

f1,0(x)dx =

∫ ∞

β0

f1,0(x)dx = 1 (8)

In the following, the parts of the pdfs resulting from false-alarms and missed detection are

defined as,

pFA
0 (x) = p(x|H0); x > β0 (9)

pMD
0 (x) = p(x|H1); x < β0 (10)

Consequently, the true noise and target distributionsp(x|H0) andp(x|H1) can be written as,

p(x|H0) =
1

1 − ǫ

[

f0,0(x)

A0,0
− ǫpMD

0 (x)

]

+ pFA
0 (x) (11)

p(x|H1) =
1

ǫ

[

f1,0(x)

A1,0
− (1 − ǫ)pFA

0 (x)

]

+ pMD
0 (x) (12)

Within the j-th iteration of the proposed iterative detection algorithm, updated estimateŝθ0,j

and θ̂1,j are obtained via

θ̂0,j = arg max
θ

∏

x(n)∈Nj

f0,j(x(n)) (13)

and

θ̂1,j = arg max
θ

∏

x(n)∈Tj

f1,j(x(n)) (14)

The biases in the parameter estimates, i.e.,

E



 lim
j→∞

arg max
θ







∏

x(n)∈Nj

(1 − ǫ)p(x|H0) + ǫpMD
j (x)









 − θ0 (15)
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6
and

E



 lim
j→∞

arg max
θ







∏

x(n)∈Tj

(1 − ǫ)pFA
j + ǫp(x|H1)









 − θ1 (16)

are generally nonzero. Further, the difference between thetrue and estimated target and noise

pdfs, as demonstrated in Equation (12) are generally dependent on the true parameters and

thus cannot be corrected for. Except for overly simplified examples, where e.g.ǫ = 0, or

where the noise and target pdfs are non-overlapping, the above simple iterative detection

approach provides biased parameter estimates and, thus, does not converge to the desired

probability of false-alarm,α.

III. T HE ITERATIVE ALGORITHM USING MORPHOLOGICAL FILTERING

The valuespFA
j (x) and pMD

j (x) distort the estimated pdf’s and thus lead to biases in the

distribution parameters when applying the iterative detection scheme, we seek methods which

eliminate these biases. Since neither the true distribution parameters nor the percentage of

targets and noise in a signal are known, an analytical reversal of the bias cannot be achieved.

Below, we apply morphological filtering as means to mitigatethe errors in the target and

noise pdfs [16], [22].

A. Morphological Filtering

When the radar cell size is smaller than the targets spatial extent, target samples would

appear in groups forming target objects, whereas noise samples of high intensity will not be

necessarily adjacent. In this respect,pFA
j (x), which mistakenly expands the target setTj , also

truncates the noise setNj. This expansion comprises high intensity pixels that are isolated

and non-contiguous. On the other hand,pMD
j (x), which truncatesTj , and at the same time

mistakenly expandsNj comprises grouped contiguous target pixels with low intensity. In

radar imaging, the target image intensity decreases from the center of a target object towards

its rim [23]. This decreasing depends on the properties of the system point spread function,

as high resolution systems lead to sharp images. As such, thesamples inherent topMD
j (x)

should be sought at the edges and boundaries of the imaged target.

The above properties are key in the design of the filtering operation as part of the iterative

detection approach. LetbFA(n) and bMD(n), n = 0, ..., N − 1 denote the binary signals,
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7
resulting from the false-alarms and missed detections, respectively, as described bypFA(x)

andpMD(x). Then, similarly to Equation (12) we can write

bD(n) = b(n) + bFA(n) − bMD(n), n = 0, ..., N − 1 (17)

The filtering operationV(·) should then satisfy

V(bD(n)) = bD(n) − bFA(n) + bMD(n) = b(n), n = 0, ..., N − 1 (18)

The above operation entails removing and adding the binary signals representing false-alarms

and missed detections, respectively. We apply morphological filtering [16] for finding both

binary signalsbFA(n) and bMD(n), n = 0, ..., N − 1. The basic morphological dilation and

erosion operations (see e.g. [24], [22]) are used for this purpose. Letb, bD, bFA and bMD

be theN × 1 vector representations ofb(n), bD(n), bFA(n) and bMD(n), n = 0, ..., N − 1.

Mathematically, the dilation operation can be described by,

b ⊕ E = {z|[(Er)z ∩ b] ⊆ b} , (19)

The variableE is referred to as the structuring element and(E)z is its translation by point

z. The reflection ofE, i.e., the part of the signal being covered by the structuring element

is denoted byEr. The variablez marks the origin of the structuring element. The erosion

operation betweenb and the structuring elementE is defined by all positions ofz where the

structuring element is completely contained inb. Formally,

b ⊖ E = {z|(E)z ⊆ b} . (20)

In Equations (19) and (20), we applied set operations, viewing each vector as a set of

ordered elements. We further define the morphological opening b ◦E as an erosion followed

by a dilation operation. The basic morphological operations are illustrated in Figure 2, where

a structuring element of size3 is used. In the following, morphological opening is employed

to identify and eliminate the distorting signalbFA. Hereby, we consider the detected signal

bD consisting of a finite number of non-overlapping target and noise objects, i.e.,

bD =
K

∑

k=1

OD
k , (21)

June 22, 2010 DRAFT



8
with OD

k being thekth object in bD and K being the total number of objects inbD. As

indicated by Equation (17),bFA consists of all noise samples or objects inbD. Thus, with an

adequate structuring element,ED,

bD ◦ ED = (bD ⊖ ED) ⊕ ED =
K

∑

k=1

OD
k ◦ ED =

K
∑

k=1

(OD
k ⊖ ED) ⊕ ED (22)

OD
k ◦ ED = ∅ , ∀k where|ED| > |OD

k | (23)

OD
k ◦ ED ≈ OD

k , ∀k where|ED| ≤ |OD
k | (24)

bFA =
∑

p∈P

OD
p with P :=

{

k | |ED| > |OD
k |

}

(25)

bD ◦ ED ≈ bD − bFA (26)

with |ED| and |OD
k | being the length of the structuring element and thek-th object, respec-

tively. An example of the application of Equations (22)-(26) is illustrated in Figure 3. We

consider a binary signalbD that consists ofK = 6 objects, three target and three noise objects.

By choosing a structuring element as defined by Equation (24), i.e., the one with the size

of the smallest target object (in this case|ED| = 3), the morphological opening successfully

eliminates all noise objects and leaves all target objects unaltered.

The estimation of the truncating signalbMD can be accomplished via a dilation operation

with an adequate structuring elementET . The dilation extends the objects remaining in the

signal (ideally only target objects) attempting to encompass the pixels located at the target

image boundaries. Formally,

bMD ≈
[(

bD − bFA
)

⊕ ET

]

−
(

bD − bFA
)

. (27)

Therefore,

V(bD) =
(

bD ◦ ED

)

⊕ ET ≈ bD − bFA + bMD (28)

as required by Equation (18). The block diagram of the iterative target detector using mor-

phological operations is depicted in Figure 4. It is noted that the difference between Figure

4 and Figure 1 is the inclusion of the morphological filteringafter the detection operation.
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9
B. Conditions for Convergence

Having discussed the nominal behavior of the filtering step,the conditions under which

V(·) in combination with the other steps of the iterative algorithm will lead to convergence

towards the true distribution parameters should now be examined. We consider a signalx(n),

n = 0, ..., N − 1, with N0 noise samples andN1 target samples such thatN0 + N1 = N .

In order to determine the conditions of convergence, it is primarily important to know

the limitations on the size of the structuring elementED. The size|ED|, which represents

the length of the structuring element for the one-dimensional case, must be determined in

consideration of the pixel-allocation errorη that is likely to incur. This error is given by,

η = α|ED| + α|ED|+1 + α|ED|+2 + ... (29)

whereα is the false alarm rate. It is measured by the probability of|ED|, or the relative

number of noise samples having an intensity higher than the determined threshold. Given

α ≪ 1, the above expression can be simplified by only considering the largest term in the

sum, i.e.,η ≈ α|ED|.

The N0 noise samples can further be divided into three possible outcomes:

• The number of samples, which correctly have been detected asnoise,NC

• The number of samples, which represent false-alarms with a limited spatial extent of

maximum|ED| − 1, denoted asNF

• The number of samples, which represent false-alarms with a spatial extent larger than

or equal to|ED|, which will be referred to as allocation errors, denoted asNA

Clearly, the equalityN0 = NC +NF +NA holds. The morphological opening with structuring

elementED will successfully eliminate theNF samples with limited spatial extent, whereas

it will fail to remove theNA allocation errors. Thus, in order to fulfill Equation (23) inone

iteration, the total number of allocation errors must be smaller than one. Therefore, we require

NA ≤ η · (N0 − |ED| + 1) ≈ η · N0 < 1, (30)

with N0 − |ED| + 1 being the maximum (the targets being located at the edge of the scene)

number of locations where a false alarm could occur. For simplification, we invoke the

assumptionN0 ≫ (|ED| − 1), which is valid in most images encountered. Accordingly,
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10
we can replace the termN0 − |ED|+ 1 by N0, as in (30). The upper constraint on the upper

value ofED is given by,

|ED| ≤ min{OT
k }, ∀k, (31)

with OT
k being thekth target object inbD. This limitation can be deduced from Equation

(24). Obviously, missed detection may also lead to the inaptness of the iterative approach to

detect all targets. However, as stated above, it can be expected that pixels subject to missed

detections appear at the image boundaries of targets. Therefore, it is unlikely that these errors

are too significant to compromise the detection of a spatially extended target.

Denoteβ as the true sample threshold resulting from Neyman-Pearson, given exact knowl-

edge of the distribution functions under the null and alternative hypothesis. Then, for an initial

thresholdβ0 < β, associated with the initial parametersθ̂0,0, θ̂1,0, convergence will occur, by

definition, if more noise samples are eliminated by the operator V(·) than when the initial

threshold assumes the correct valueβ. If α0 is the false alarm rate resulting from a low

thresholdβ0, then the new allocation errorη0 becomes

η0 = α
|ED|
0 + α

|ED|+1
0 + α

|ED|+2
0 + ... (32)

It follows from Equation (29) that, for the same|ED|, η0 > η, sinceα0 > α for β0 < β.

With η0 > η, the filtering operation will not always yield a convergencetowards the true

parameters in all cases, since it is conceivable that allocation errors persist through the iterative

scheme. Three possible cases can be identified:

1) The number of errorsNA is zero. Thus, all noise samples are successfully removed and

the true parameters can be estimated from the resulting sets. In this case, the number

of false-alarms is reduced fromNF to 0 and convergence occurs after the first iteration.

2) Allocation errors occur, butNA is smaller than the number of false alarms with a limited

spatial extent, i.e.,NA < NF . In this case, the operationV(·) will yield an improvement

of the estimated distribution parameters, but not the true parameters, as the number of

false-alarms is reduced fromNA + NF to NA. Further iterations will be needed until

convergence towards the true parameters occurs. The new thresholdβ1 will be higher

than or equal toβ0, thus yielding a new false alarm rateα1 with α ≤ α1 ≤ α0.

3) In the caseNA > NF convergence towards the true parameters will generally notoccur.
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11
Under this condition, the new parameters will result in a newthresholdβ1 ≤ β0, which

will elicit even more allocation errorsη1 ≥ η0 until all noise is potentially classified as

a target.

For the case thatβ0 > β, similar conclusions to those discussed above can be drawn.In

this case a false-alarm rateα0 that is lower than the presetα is obtained, possibly leading to

allocation errors in the target set. As shown above, again three cases can be considered

• No target allocation errors occur. In this case, the morphological dilation viaET will

restore the target signal in one iteration.

• Target allocation errors occur, but their number is smallerthan the number of unaffected

target samples. In this case, a new iteration yieldsβ1 ≤ β0 and thusα ≥ α1 > α0

• More target allocation errors occur than the number of unaffected target samples. In

this case, convergence towards the true parameters generally will not occur. The new

thresholdβ1 will be even higher thanβ0, yielding α1 < α0. Thus, further iterations will

eliminate target objects, until all targets are potentially classified as being noise.

The practical implication of this section is that the initial parameters of the iterative

algorithm should be chosen pessimistically, but not exceedingly pessimistic, since this could

lead to the third case described above. Details on how initial parameters, or, equivalently, an

initial binary signal can be chosen will be provided in Section VI.

IV. OPTIMIZING THE STRUCTURING ELEMENT

As shown in the previous Section, the expected number of pixel-allocation errors (≈ N0 ·η)

in the processed signal is dependent on the size and, in the case of two or three dimensional

images, shape of the structuring elements. A structuring element of the same size and shape as

the smallest target object will minimize the expected errors, thus rendering the best possible

estimation of the parameters under the null and alternativehypothesis. Unfortunately, it is not

always valid to presume any a priori knowledge of the size andshape of target objects in

the scene of interest. For this reason, a method for finding the correct structuring elements is

vital for the success of the iterative detection approach.

In [16], we have suggested that the detection of non-comprehensive estimates forbFA

and bMD can be used for the purpose of finding an appropriate structuring element. The
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12
employment of a non-ideal structuring elementẼD will by definition lead to truncated and/or

distorted target and noise data setsT̃ andÑ respectively.

Here, we propose to detect such corrupted sets via a comparison of parametric and non-

parametric density estimators. We compare a parametric model, e.g.,p(x|H0; θ̂0,J) and a

non-parametric modelf0,J(x), where the indexJ stands for theJ-th, i.e., final iteration. This

comparison, which can be based on the MSE, is suitable for detecting non-comprehensive

estimates forbFA andbMD, if the following inequality holds true (the noise set is considered

exemplarily):

E
[

(f0(x) − p(x|H0; θ0))
2
]

< E
[

(f̃0,J(x) − p(x|H0; θ̂0,J))2
]

(33)

Here,f0(x) denotes a non-parametric estimate of the noise pdf andp(x|H0; θ0) denotes the

parametric density under the null hypothesis, given the true parametersθ0. f0,J(x) is a non-

parametric density estimation of the noise at theJ-th, i.e., final iteration, as detailed in

Equation (5), whereasp(x|H0; θ̂0,J) is the parametric density under the null hypothesis given

the parameter estimates from theJ-the iteration step. The non-parametric density estimator

has to be chosen in accordance with the postulated inequality of Equation (33). In this light,

we suggest the employment of a kernel density estimator [25]as

f0(x) =
1

hN

N−1
∑

n=0

K

(

x − x(n)

h

)

(34)

with K(·) andh being the kernel function and bandwidth, respectively. By definition,p(x|H0; θ0)

describes the true distribution ofN with the true set of distribution parametersθ0. The

expected value off0(x) being

E [f0(x)] =

∫ ∞

−∞

1

h
K

(

x − y

h

)

p(y|H0; θ0)dy = p(x|H0; θ0) (35)

and

lim
N→∞

Nh · Var[f0(x)] = p(x|H0; θ0)

∫ ∞

−∞

K2(y)dy (36)

Proof and conditions for Equations (35) and (36) are presented in [26]. The MSE is thus
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13
lower bounded by the left side of Equation (33), since

lim
N→∞

E
[

(f0(x) − p(x|H0; θ0))
2
]

= 0 (37)

It remains to show, that the MSE for anỹf0,J(x) resulting from the setNJ is asymptotically

greater than zero. The non-parametric distribution model of the underlying dataNJ can be

expressed as follows

f̃0,J(x) =
N

N + NFA
J − NMD

J



f0(x) +
1

hN

∑

{n|bF A
J

(n)=1}

K

(

x − bFA
J (n)

h

)

−
1

hN

∑

{n|bMD
J

(n)=1}

K

(

x − bMD
J (i)

h

)



 ,

(38)

with NFA
J and NMD

J being the number of detected samples inbFA
J (n) and bMD

J (n), n =

0, ..., N − 1 respectively. Considering Equation (35), the expected value of Equation (38) can

be written as

E[f̃0,J(x)] = a1p(x|H0; θ0) + a2fFA(x) − a3fMD(x), (39)

with a1, ..., a3 being scaling factors andfFA(x) andfMD(x) being the distribution functions

of the remaining distorting and truncating sets. As per definition, fFA(x) has no impact below

the respective thresholdβJ and on the other hand,fMD(x) has no impact aboveβJ , the case

that

a2fFA(x) − a3fMD(x) ∼ p(x|H0; θ0) (40)

can practically be excluded. In any other case, there will exist a Bias[f̃0,J(x)] = E[f̃0,J(x)]−

p(x|H0; θ̂0,J) greater than zero and therefore

lim
N→∞

E
[

(f̃0,J(x) − p(x|H0; θ̂0,J))2
]

> 0 (41)

With the validity of Equation (33) shown, the structuring element may be optimized by

repeating the iterative detection procedure with structuring elementsEs
D, s = 1, ..., S, and
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then choosing

ÊD = arg min
Es

D

G
(

MSE
[

f̃1,J(x), p(x|H1; θ̂1,J)
]

, MSE
[

f̃0,J(x), p(x|H0; θ̂0,J)
]

| Es
D

)

, (42)

with G(·) being a function merging the mean squared errors computed for the iteratively

estimated target and noise densities. The exact technique of merging the MSEs can be chosen

according to the measure of confidence regarding the validity of the noise and target density

class models, respectively. If, for example, one is fairly confident that noise stems from a

Gaussian distribution, but less confident about the target density class, then it is advisable to

design a functionG(·), which assigns a greater weight to the MSE resulting from thenoise

models. Furthermore, because its variation is not confined to individual pixels it may be of

advantage to vary the false alarm rateα instead of the structuring elementED as suggested

by Equation (42). For the one-dimensional case the relationbetween the two is expressed in

Equation (29).

V. SIMULATION RESULTS

In order to assess the performance of the proposed methods, namely,

• The simple iterative detection approach (without filteringstep)

• The iterative detection approach using morphological filtering (static structuring element)

• The iterative detection approach using an adaptive morphological filtering

we consider a three-dimensional scene description, as depicted in Figure 5. The signal is com-

posed of three nonoverlapping square-sized target objectsfollowing a Gaussian distribution

and noise following a Weibull densities being present in theremaining scene. Gaussian (target)

and Weibull (noise) have been chosen to mimic 3D TWRI images which have empirically

been shown [10] to follow these distributions. We note that the assumption in Section II that

the likelihood ratio thresholdγ0 corresponds to a single sample thresholdβ0 is not valid

when considering a Gaussian and Weibull density for modelling the two hypotheses. It is

thus considered as an approximation in the following.

The iterative detection approach can easily be extended to 3D images by separating a 3D

image into a set of 2D images where two-dimensional morphological operations can be used.

Given the TWRI application in mind, this would correspond toa separate treatment of each

radar B-Scan.
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The improvement of the parameter estimates with the number of iterations using the iterative

detection approach without and with morphological filtering is delineated. The parameters of

the distributions under the null and alternative hypotheses are:

θ0 =





κ0

λ0



 =





1

2.5



 ; θ1 =





µ1

σ1



 =





10

0.5



 (43)

whereκ0 andλ0 denote the scale and shape parameter of the Weibull distribution, respectively.

Figure 6 (a)-(d) shows the development of the parameter estimatesκ̂0, µ̂1, λ̂0, σ̂1 for j =

1, ..., 20 iterations of the proposed detectors using the Neyman-Pearson test for detection

with a false-alarm rate ofα = 0.05. The results were obtained using1000 Monte Carlo

simulations. The parameter estimates shown at the0th iteration correspond to the initially

chosen parameters and are identical for both methods. The structuring element is of length

|ED| = 10.

As evident from Figure 6 (a)-(d), a considerable bias is visible when choosing the iterative

target detector without morphological filtering. This bias, which has been derived in Section

II (Equations (15) and (16)), is caused by the inability to recover the pdf’s underH0 andH1

without an additional filtering operation. Bias in the parameter estimates will ultimately lead

to a detector which does not provide the required false-alarm rate. On the other hand, the

iterative detector using morphological filtering quickly converges towards the true parameters

(in this simple example, convergence afterJ = 3 − 4 iterations is achieved).

The choice of an optimal structuring element, as proposed inSection IV, becomes crucial

when varying statistics are considered. We therefore consider a similar scenario as above,

except thatκ0 is varied between0 and 20. As a performance measure, the mean absolute

deviation (MAD) of the obtained binary signalbD
J afterJ iterations and the true binary signal

b is used as

MAD(bD
J , b) =

1

N

∑

n

|bD
J (n) − b(n)| (44)

where a vectorized notation of the 3D image is used for simplicity. The MAD using the

scenario described above is depicted in Figure 7. It can be observed, that the proposed

detector without filtering operation (dotted line) has a constant error, even for smallκ0. This

corresponds to the bias in the parameter estimates described above. The iterative detector
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with a static structuring element|ED| = 10 × 10 (dashed line) shows an improvement, but

has an early breakdown point atκ0 ≈ 6, where the chosen, static structuring element is no

longer able to separate target and noise data. The same statement holds when choosing a

static 10 × 10 median filter as in [10] (solid line). Here, the detector already breaks down

at κ0 ≈ 5. When using an optimized structuring element (solid line with dotted markers), as

proposed by Equation (42) (in our example,G(·) is just a simple averaging operation), we can

accept a far higher noise level,κ ≈ 8. Beyond the breakdown point, we observe occurrence

of the scenario which was analytically derived in Section III-B. In this case, the allocation

error is so large that convergence towards the true parameters cannot be achieved and either

all samples are classified as being noise or target exclusively. It is further noted that in high

SNR, the adaptive approach does not yield improvement over the static approach. This is

due to the fact that for a smallκ0, only few false alarms will occur which are likely to be

isolated. Thus, any reasonably chosen structuring elementof size |ED| > 1× 1 will perform

equally well in the elimination of these outliers and an adaptive structuring element size will

not enhance the detector performance.

We further demonstrate the performance of the two-parameter OSCFAR detector (dash-

dotted line), derived in [15]. As proposed by Rohling [12] the 75th percentile has been

used to obtain the image threshold. The OSCFAR detector shows a continuous degradation

as opposed to the breakdown-point behavior of the iterativeapproach. However, for most

scenarios it also shows a worse performance in terms of MAD.

We note that the choice of the structuring elementET used to restore missed detections is

more problematic. The optimal configuration depends on the target characteristic and system

point spread function. A square static structuring elementof size 3 × 3 is chosen which

effectively enlarges each remaining target object by one pixel. It shall, however, be noted

that one could consider a joint optimization ofED andET which will be a subject of future

research.

VI. EXPERIMENTAL RESULTS

In this Section, the proposed detectors are applied for the detection of stationary targets in

Through-the-Wall Radar Imaging (TWRI) applications. We consider an experimental setup

depicted in Figure 8. Three metallic objects (sphere, dihedral and trihedral) are placed on
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high foam columns at different heights behind a solid concrete block wall. The respective

dimensions are shown in Figure 9. The wall parameters ared = 5.625in (wall thickness)

and ε = 7.66 (dielectric constant). For imaging, a57 × 57 element planar array with an

interelement spacing of0.875in was used, which has been synthesized using a single horn

antenna. The array is centered at a height of48in above ground. The scene is illuminated

using a stepped-frequency continuous-wave (CW) signal with a bandwidth of2.4 GHz and

a center frequency of1.9 GHz, where801 frequencies with a stepsize of3 MHz are used.

We note that the following conclusions are drawn based on an extensive study performed on

several data sets, but these cannot be reproduced due to space limitations.

There exist many approaches for the actual beamforming or image formation process. This

includes tomographic approaches [27], [28], [29] where theimage formation is seen as an

inverse scattering problem and differential SAR [30]. In this paper we restrict ourselves to

wideband delay and sum beamforming [31], [32], although we maintain that the proposed

detectors are postprocessing methods and as such are independent of the actual imaging

process.

We consider known wall parameters for beamforming. References [33], [34], [11] describe

methods on how to estimate unknown wall parameters.

For beamforming, we consider two possible schemes for removal of signal reflections from

walls.

• Background-Subtraction: In this case, we assume that emptyscene measurements are

available. The received signal amplitudes obtained when illuminating the empty scene

can thus be coherently subtracted from the signal amplitudes obtained when illuminating

the filled scene.

• Wall Removal: In practice, empty scene measurements are often not available. We follow

the simple approach from [35] where a spatial notch filter is used to remove wall effects.

The spatial filter used is given by

H(ejω) =
1 − e−jω

1 − ̺e−jω
(45)

where a notch width̺ = 0.8 is chosen. Further, as proposed in [35], two-way filtering

and downsampling of the antenna outputs by a factor of2 is implemented.
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Typical B-Scans (2D images at particular heights of interest) resulting from the wideband

beamformer using raw data, background subtraction and wallremoval are shown in Figures

10(a)-(f). Two different heights are considered, namely,−5 in and +25 with respect to the

array center. Here, the objects of interest are marked by solid (trihedral), dashed (dihedral) and

dotted (sphere) circles. Clearly, the images in Figure 10(a) and(b) obtained from the raw data

without preprocessing to remove the wall reflections are very cluttered and cannot be used for

detection. With background subtraction preprocessing of the data, the image at lower heights,

e.g. at−5in, has high clutter at approx.−2, ...,−6 ft crossrange and8, ..., 12 ft downrange

(see Figure 10(c)). Also, as the objects in the scene are placed at different heights, they may

only be visible at specific B-Scans, as evident from Figure 10(d). The dihedral has a large

radar cross-section and was visible in practically all B-Scans from−10, ..., +30in. The metal

sphere and the trihedral, on the other hand have a rather small radar cross-section and are

only visible within a small range of B-Scans. When using the simple spatial filter based wall

removal technique, a large increase in clutter can be observed as shown in Figures 10(e) and

(f). It shall be noted that the clutter is comparable to or even stronger than the targets which

will affect subsequent detection results.

The proposed detector, derived for 1D signals, can easily beextended to 2D signals

by choosing two-dimensional structuring elements for morphological filtering and applying

pixelwise detection, as detailed in e.g. [10], [16]. By applying the detector to a set of B-Scans

obtained at different heights, finally a 3D binary representation of the scene can be obtained.

As shown in [10], [16], the usage of a Weibull distribution for p(x|H0) and a Gaussian

pdf for p(x|H1) are appropriate choices when considering the above mentioned setup for

TWRI. Again, the Neyman-Pearson test has been used as a detector, where the likelihood

ratio threshold is obtained by integrating over the pdf of the likelihood ratio under the null

hypothesis, per Equation (3). For initialization, insteadof using initial parameter vectorŝθ0

and θ̂1, which may be difficult to discern in practice, we propose using an initial binary

image instead, which is easier to obtain. We choose the initial binary imageBD
0 (n, m),

n = 0, ..., N − 1, m = 0, ..., M − 1 as

BD
0 (n, m) =







1, X(n, m) > med(X)

0, X(n, m) ≤ med(X)
(46)
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whereX(n, m), n = 0, ..., N−1, m = 0, ..., M−1 is the B-Scan under detection and med(X)

is the median image value. Thus it is guaranteed that in the first iteration, half of the image

values are assigned to the target setT0 and the other half to the noise setN0. This simplified

the estimation of the initial (truncated and distorted) target and noise distributions.

The 3D detection result using the iterative detector with a static structuring element of size

3 × 3 is shown in Figure 11(a) for background-subtracted images.A false-alarm rate of1%

has been chosen. It is evident that the chosen structuring element is suboptimal. Although the

circle (dotted ellipse) and the trihedral (solid ellipse) can be detected, the dihedral (dashed

ellipse) can hardly be separated from the large amount of clutter present in the respective

image region.

For the iterative detector using adaptive morphological filtering we chose the optimization

procedure as presented in Section IV, whereby we restrictedourselves to quadratic structuring

elements for simplicity. The corresponding 3D detection result (again, using background-

subtracted data) is shown in Figure 11(b). Now, all three objects can clearly be detected

and the amount of clutter is strongly reduced to a small volume at approx.8, ..., 10 ft.

downrange and−5, ... − 3 ft. crossrange. The iterative detector adapts itself to theimage

statistics which are varying within the scene. This is demonstrated by plotting in Figure 12 the

noise statistics (shape and scale parameter of the Weibull distribution), the chosen structuring

element size and the output of the goodness-of-fit (GOF) function (Equation (42)) for all

heights−10, ..., +30in. It is clear that the structuring element automatically varies between

4×4 and7×7. The noise is stronger in the upper and lower region of the 3D scene and is also

varying its shape (Note that a shape parameter of2 corresponds to a Rayleigh distribution

which would not be an appropriate choice here). Further, it shall be noted that in the middle

region of the 3D scene the GOF function yields relatively large values which implies that

the assumed models for target and noise distributions are suboptimal. Improvements could be

obtained using resampling schemes such as the bootstrap [36] which may turn out especially

useful for small data sizes.

The 3D detection result when using the OSCFAR detector is depicted in Figure 13 for

comparison. Trihedral and sphere can clearly be detected, however it is hard to discriminate

the dihedral from its surrounding. Further, a strong amountof clutter at approx.8, ..., 10 ft.
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downrange and−5, ... − 3 ft. crossrange deteriorates the detection.

The 3D detection result when using the wall removal procedure from [35] is depicted in

Figure 14(a) and (b). As expected by the strong amount of clutter left in the radar images

(Figures 10(e) and (f)), detection becomes much harder whensecondary data for background-

subtraction is not available. This holds for the proposed detector as well as for the OSCFAR

detector. The metal sphere, which has a relatively small radar cross section is no longer visible.

The dihedral and trihedral can still be detected, but are embedded in strong clutter. We note

that wall reflection removal methods which estimate the wallparameters and proceed to model

wall EM returns and subtract them from the data can lead to better removal of clutter [8], [37]

compared to spatial filtering which does not require estimation of the wall EM characteristics.

We maintain, however, that the proposed detection scheme isa postprocessing operation which

can be applied with any wall EM removal techniques.

The computational complexity of the proposed approaches isdetermined by the number

of iterationsJ and structuring elementsS. As the computation time for one iteration is

comparable to that of the OSCFAR, the proposed approach increases in complexity by a

factor of J · S, which would typically be around3 − 5 when using static morphological

filtering, and approx.20 − 30 when using the adaptive morphological filtering.

VII. CONCLUSION

An iterative target detector has been presented which adapts itself to different and unknown

image statistics. We have shown that there is need for an additional morphological filtering step

to reduce the bias in parameter estimation, which typicallyoccurs when using a simple version

of the detector. Properties of the proposed detector such asconditions for convergence, optimal

choices of the structuring element for morphological filtering and practical issues such as the

choice of initial parameters were examined. The proposed detector was applied to synthetic 1D

data to demonstrate its performance. It was applied for target detection in Through-the-Wall

radar imaging, where the image statistics vary with space. Background-subtraction as well as

a wall removal method based on a spatial notch filter have beeninvestigated. When using the

proposed iterative detector with an optimum choice of the structuring element, targets in the

case of background-subtracted images have been clearly detected which enhances subsequent

steps such as feature extraction or classification of targets. When considering simple wall
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removal techniques without knowledge of the background, a strong amount of false alarms

deteriorates the detection results.
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Fig. 1. Block diagram representation of the simple iterative detection approach
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Fig. 5. Synthetic 3D signal
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Fig. 9. Scene layout
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(d) B-Scan at height +25in, Background-
subtraction
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(e) B-Scan at height−5in, Wall removal
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(f) B-Scan at height+25in, Wall removal

Fig. 10. B-Scans obtained from wideband delay and sum beamforming
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(a) Static morphological filtering
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(b) Adaptive morphological filtering

Fig. 11. 3D detection results using the iterative detector and background subtraction

Fig. 12. Image statistics changing with height
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Fig. 13. 3D detection result, OSCFAR using background-subtraction
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(a) Iterative detector using adaptive morphological filtering (b) OSCFAR

Fig. 14. 3D detection results using wall removal
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