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Abstract

In this paper, a scheme for target discrimination and classification is proposed. The proposed

scheme is applied to through-the-wall microwave images obtained by using a wideband radar

implementing frequency-domain back-projection. We consider stationary targets where Doppler and

change-detection based techniques are inapplicable. The proposed scheme applies image segmenta-

tion, followed by feature extraction. We map target returns to a feature space, where discrimination

among different targets and clutter is performed. To achieve target-clutter discriminations independent

of target location in range and cross-range, we use compensation methods to account for varying

system resolution within the perimeter of the scene imaged. Real data collected using an indoor

radar imaging scanner is used for validation of performance.

Keywords: Through-the-wall, radar imaging, segmentation, feature extraction

I. INTRODUCTION

Through-the-Wall Radar Imaging (TWRI) is an evolving technology[1], [2], [3], [4] al-

lowing to sense through visually opaque building material and man made structures using

electromagnetic wave propagation. Having numerous civilian, law enforcement and military

applications, TWRI is faced with many challenges, including detection and classification of

a large variety of possible indoor targets in presence of multipaths and unwanted wall signal

attenuation and dispersive effects [5]. In absence of frequency-domain or time-domain changes

associated with target motion, Doppler signatures and change detection techniques applied to

non-moving animate and inanimate targets become ineffective to render proper decisions on

stationary targets behind walls.

The work by Moeness Amin is supported in part by ONR, Grant no N00014-07-C-0413

May 10, 2011 DRAFT



2
The TWRI images of stationary targets are subject to strong artifacts, which could visually

appear, in intensity and spatial concentration, as targets. This, in turn, leads to false alarms and

misinterpretation of the image. Robust computer-based systematic tests and methods should,

therefore, be sought out and applied in lieu of human reading and eye-based inspections.

Much work has been accomplished in modeling and imaging of fixed targets behind walls

and inside enclosed structures [6], [7], [8], [9]. Mainly, target detection in through wall

imaging has proceeded along two tracks. Data-domain target detection involved waveform

design using matched illumination techniques and incorporated partial of full prior knowledge

of target RCS over angle and frequency [10]. Matched illumination detection only works

well under specific assumptions on targets and propagation environments and becomes less

effective with multiple targets and unknown target orientations. Image-domain target detection,

on the other hand [11], [12] faces the challenge of operating with limited bandwidth and

insufficient physical or synthesized array aperture thus disallowing high resolution based

target analyzes and classifications. Restrictions on the radar, in terms of size and frequencies,

stem from logistics of operation, which includes infeasible long aperture, the need to avoid

infringing over wireless services, and responding to wall electrical properties that cause severe

attenuation of high frequency signal components. Nevertheless, image-domain detection is

considered attractive, as it handles multiple targets and makes no prior assumptions on target

RCS.

Detection in the image-domain has been proposed using centralized [13] as well as decen-

tralized [14] frameworks. The common aim within both frameworks is to deduce from a set

of M three-dimensional (3D) TWRI images a single binary 3D reference image indicating

the presence or absence of targets.

In this paper, we focus on the problem of target classification. The 3D TWRI image is

divided into a finite set of segmented objects which are labelled according to a certain class.

This class may depend on target material, shape, etc. This process, referred to as object

occupancy map, can then be used to describe the targets present in the scene. A key issue

concerning target classification is robustness with respect to target position coordinates and

system parameters.

TWRI target images change in pixel intensity and extent when repositioning the target
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with respect to the imaging system and/or changing the system parameters, such as band-

width and aperture. In order to insure that the performance of the detection/classification

schemes are robust to system specifications or target positions, the above changes must be

properly characterized and taken into consideration. Changes in the TWRI target images can

mathematically be expressed by using the concept of the system point spread function (PSF),

which is a function of system parameters, such as bandwidth and aperture, as well as the

target and standoff distance. The PSF spread determines the dispersion of point targets in

the image domain. We propose using the PSF to perform the necessary compensation and to

obtain features that are resolution-independent.

Previous work on target classification in TWRI, includes the use of the principal com-

ponent analysis on B-Scans [15] and superquadric fitting [16] on segmented objects. Both

approaches, however, provide features that are not system resolution-independent or target

position-invariant. This corresponds to the implicit assumption of imaging in the far field,

which is not appropriate for most indoor imaging scenarios. The contribution of this paper

is the treatment of a general 3D image domain based target classification scheme for TWRI

with resolution-independent features. The proposed classification framework can be of value

also for other near-field imaging applications, such as synthetic aperture sonar imaging [17],

[18], in which case the target and shadow features depend on the imaging system and scene

parameters. It is noted, however, that in this paper the focus is on 3D near-field image

classification for indoor radar imaging.

In this paper, we present a classification framework which comprises beamforming, segmen-

tation, feature extraction and finally classification, as shown in Figure 1. In Section II, image

formation in radar imaging using wideband sum-and-delay beamforming is summarized.

We examine the effect of changes in downrange and crossrange resolution as well as the

target-system distance separation on the imaged target pixel intensities and shape. This is

fundamental in order to achieve resolution-independent classifications. Section III details

different ways of segmenting TWRI images into a finite number of candidate objects. With

the objects identified, the next step of feature extraction is described in Section IV. This

step maps objects from the image domain to a feature vector which is a parsimonious object

description. We consider statistical as well as geometrical feature extractions. A description
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of how to perform discrimination between the target of interest and clutter returns is provided

in Section V. Finally, the conclusion is given in Section VI. All real data examples, included

in this paper are obtained from TWRI measurements collected at the Radar Imaging Lab at

Villanova University, Villanova, PA, USA.

II. IMAGE FORMATION

In this section, the wideband sum-and-delay beamformer [9], [7] for high resolution radar

imaging is described. We hereby follow the same scheme as in [9], which has a strong link

to high resolution image reconstruction in inverse synthetic aperture radar (ISAR) [19], [20].

In order to achieve position- and resolution-independent features of objects, i.e., insensitivity

to changes in object position and system resolution, it is important to examine the effects of

the system resolution on the radar image, when using wideband sum-and-delay beamforming.

These effects impact pixel intensity values and the appearance of the imaged object. Further,

we describe the change of the beamformer when a wall, with known thickness and dielectric

constant, is present between the imaging system and the scene of interest. We introduce the

experimental setup and demonstrate practical examples of the change of target pixel intensity

and object shape, derived theoretically in the first part of this section.

We note that, for through wall radar applications and examples furnished in this paper,

we assume perfect knowledge or correct estimated values of the wall parameters. Estimation

techniques of the wall thickness and dielectric constant can be found in [2], [3] and references

therein.

A. High resolution radar imaging

In the following, we consider a uniform 1D monostatic array of K transceivers, placed at

vk, k = 0, ..., K − 1. The scene is described by a local coordinate system (u′, v′), as shown

in Figure 2. The distance from the k-th transceiver can be approximated by

Rk(u
′, v′) ≈ Rk(0, 0) + u′ cosϕk − v′ sinϕk (1)
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where Rk(0, 0) denotes the distance from the k-th transceiver to the center of the scene, and

ϕk is the respective angle. Accordingly,

ϕk = sin−1

(
vk

Rk(0, 0)

)
(2)

where vk is the position of the k-th transceiver with respect to the array center. As such, the

two-way propagation delay is given by,

τk(u
′, v′) ≈ 2

c
(Rk(0, 0) + u′ cosϕk − v′ sinϕk) (3)

with c denoting the propagation speed. Consider a single point target present at (u′p, v
′
p). Sim-

ilar to Equation (3), the distance from the target to the k-th transceiver and the corresponding

two-way propagation delay are, respectively, given by,

Rk(u
′
p, v
′
p) ≈ Rk(0, 0) + u′p cosϕk − v′p sinϕk (4)

τk(u
′
p, v
′
p) ≈

2

c

(
Rk(0, 0) + u′p cosϕk − v′p sinϕk

)
(5)

Image formation can be performed using time-domain or frequency-domain backprojections,

depending on the transmitted signal form. When using the stepped-frequency (SF) approach,

a wideband pulse is approximated by a finite number of narrowband pulses. Advantages of

the step-frequency based imaging are multifold, as discussed in [7]. In the following, we

adopt the SF approach. The experimental data used in our examples were generated by a

SF 2D scanner. It is noted, however, that the performance of the proposed segmentation and

feature extraction techniques is independent of whether time-domain pulsing or step-frequency

transmission is employed. The image formation using a sum-and-delay beamformer is,

I(u′, v′) =
P−1∑
p=0

L−1∑
l=0

K−1∑
k=0

Γ(u′p, v
′
p)e
−jωl(τk(u′,v′)−τk(u′p,v

′
p)) (6)

where ωl is the l-th frequency bin and P , L and K denote the number of targets, frequency

bins, and array elements, respectively. Further, Γ(u′p, v
′
p) is the complex reflectivity of the

p-th target. The invariance of Γ with frequency and antenna elements is the characteristics of
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point targets. Reducing the problem to the case of a single target at (u′0, v

′
0) yields,

I(u′, v′) = Γ(u′0, v
′
0)

L−1∑
l=0

K−1∑
k=0

e−jωl(τk(u′,v′)−τk(u′0,v
′
0)) (7)

= Γ(u′0, v
′
0)

L−1∑
l=0

K−1∑
k=0

e−j
2ωl
c

((u′−u′0) cosϕk−(v′−v′0) sinϕk) (8)

Using the notation ωl = ω0 + l∆ω, where ω0 is the lowest frequency employed, the acquired

complex image can be written as

I(u′, v′) = Γ(u′0, v
′
0)

L−1∑
l=0

K−1∑
k=0

e−j
2(ω0+l·∆ω)

c
((u′−u′0) cosϕk−(v′−v′0) sinϕk) (9)

= Γ(u′0, v
′
0)

L−1∑
l=0

K−1∑
k=0

e−j
2ω0
c

((u′−u′0) cosϕk−(v′−v′0) sinϕk)e−j
2l∆ω
c

((u′−u′0) cosϕk−(v′−v′0) sinϕk)

= Γ(u′0, v
′
0)

K−1∑
k=0

e−j
2ω0
c

((u′−u′0) cosϕk−(v′−v′0) sinϕk)

L−1∑
l=0

e−j
2l∆ω
c

((u′−u′0) cosϕk−(v′−v′0) sinϕk)

= Γ(u′0, v
′
0)

K−1∑
k=0

e−j
2ω0
c

((u′−u′0) cosϕk−(v′−v′0) sinϕk)e−j
(L−1)∆ω

c
((u′−u′0) cosϕk−(v′−v′0) sinϕk) ×

sin
(
L∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

sin
(

∆ω
c

((u′ − u′0) cosϕk − (v′ − v′0) sinϕk)
)

Let P (u′, v′) denote the system point spread function (PSF), given by

P (u′, v′) =
K−1∑
k=0

sin
(
L∆ω
c
ξk(u

′, v′)
)

sin
(

∆ω
c
ξk(u′, v′)

) exp
(
−j
(

2ω0

c
+

(L+ 1)∆ω

c

)
ξk(u

′, v′)

)
(10)

where ξk(u′, v′) = u′ cosφk − v′ sinφk. Using this notation, the acquired radar image can be

written as a convolution of the target reflectivity with the system point spread function as,

I(u′, v′) = Γ(u′, v′) ? ?P (u′, v′) (11)

where ?? denotes the two-dimensional convolution. The PSF is of fundamental importance

in examining the effect of resolution on the resulting target images. Considering Equation

(10), the PSF is a function of the signal bandwidth and the number of array elements, thus

affecting resolution in downrange and crossrange. For a derivation of the PSF for TWRI in

far-field scenarios using ultrawideband signals we refer to [21].

Examples of a PSF are shown in Figure 3. Here, we considered imaging a 30 × 30 feet
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7
region with its center being at 100 feet away from the imaging system. The antenna elements

are centered around v = 0ft with an interelement spacing of 4in. A step-frequency approach,

as described above, is considered with a starting frequency ω0 = 0.8GHz and a frequency

spacing of ∆ω = 5MHz. Figure 3 illustrates the PSF for 51, 101 and 401 antenna elements

as well as 201, 401 and 801 frequency steps. As can be clearly observed, the extent of the

PSF in range is determined by the bandwidth, whereas its extent in crossrange is guided by

the number of array elements.

B. Effect of the change of resolution

We consider the image at the target position which according to Equation (6) i

I(u′0, v
′
0) = lim

u′→u′0
v′→v′0

I(u′, v′) = K · L · Γ(u′0, v
′
0) (12)

Accordingly, the magnitude image at the target position, which will be used in subsequent

sections, is then

|I(u′0, v
′
0)| = KL · |Γ(u′0, v

′
0)| (13)

The above equation simply states that, for the simple scenario of a point target, an increase in

the number of array antennas and/or the number of step frequencies results in a linear scaling

of the pixel intensity. If the interelement spacing and frequency spacing remain constant, then

the above increase in antennas or frequencies, respectively, amounts to increasing the array

aperture and bandwidth, and as such, represents an imaging system with enhanced crossrange

and range resolution capabilities.

The pixel intensity at target positions is not only dependent on L and K, but also on the

scene center distance Rk(0, 0). From basic radar principles [22] it is known that the amplitude

of target reflections is inverse proportionally to the range square.

Table I summarizes the three system and scene parameters treated in this Section, i.e.,

bandwidth, array elements, and target distance and lists the effect on the image in terms of

pixel intensity and target image extent. It is noted that an exact closed form expression of the

summation (10) as a function of the system parameters and target position is very difficult to

obtain. In the following, we examine the properties of the PSF through numerical evaluation

of Equation (10).
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Figure 4(a) and (b) shows slices through the 2D PSF at zero range and crossrange, respec-

tively. The same setup as described previously was considered. As can be seen, an increase

in bandwidth or number of array elements yields an increase in the maximum PSF value as

well as a narrower mainlobe. Figures 5(a) and (b) plot the maximum PSF value as a function

of the number of array elements and bandwidth and demonstrates the linear relationship as

dictated by Equation (13).

Consider the 3dB width of the PSF mainlobe. This is used as a resolution measure and

indicates the dispersion of a point target in the image as well as the degree of smoothness

of a spatially-extended target in the image domain. Figures 6(a), (b) and (c) plot the PSF

spread in range and crossrange for different number of array elements, bandwidths and scene

center distance, respectively. It is evident that the 3dB bandwidth of the PSF decreases with

increased array aperture and signal bandwidth. It is, however, proportional to the target range.

Changing parameter Yields
Increased Bandwidth Increased Pixel intensity

Decreased target image extent in range
Increased number of array elements Increased Pixel intensity

Decreased target image extent in crossrange
Increased target distance Decreased pixel intensity

Increased target image extent in range/crossrange

TABLE I
EFFECT OF SYSTEM OR SCENE PARAMETERS ON THE RADAR IMAGE

C. Through-the-Wall Radar Imaging

In wideband sum-and-delay beamforming for TWRI [7], the summation over all frequencies

and array elements still holds as per Equation (6), but the delay from the k-th array element

to a point (u′, v′) in the local scene coordinate system now has to incorporate the propagation

through the wall as [7]

τk,wall(u
′, v′) = (Rair,1 +

√
εRwall +Rair,2)/c (14)

where ε denotes the dielectric constant of the wall and Rair,1, Rwall and Rair,2 represent respec-

tively the traveling distances of the electromagnetic wave before, through, and behind the wall.
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We note that for known wall parameters, the use of Equation (14) instead of the free-space

equivalent in Equation (3) has no effect on the conclusions drawn above regarding the change

of the target images. It is noted that for more complicated wall structures and frequency-

dependent wall parameters, the PSF becomes more involved and cannot straightforwardly be

obtained by replacing the focusing delay in Equation (6).

The imaging system used throughout this paper is a synthetic aperture radar system [23],

where a single horn antenna, in motion, synthesizes a 57 × 57 element planar array. The

interelement spacing is 0.875in. As described above, a continuous-wave stepped-frequency

signal is used to approximate a wideband pulse. The experimental setup is depicted in Figure

7, where a metal dihedral is placed on a high foam column behind a wooden wall of thickness

2in. To examine the effect of target image change with increasing range, the dihedral is placed

at three different positions. These are 4, 7 and 11 feet away from the array center. Further,

four different bandwidths, namely 0.3, 0.5, 0.7 and 1.0 GHz are used with a center frequency

of 1.5 GHz to illuminate the scene. Choosing a step size of 5 MHz yields 61, 101, 141 and

201 frequency steps, respectively.

The resulting B-Scan images (two-dimensional cuts through the 3D volume) at the height

of the target center are shown in Figure 8. For imaging, we used background subtraction

[7], [11] and known wall parameters. The effect of changing the resolution via bandwidth or

target distance can be observed as explained in the first part of this Section. Increasing the

target distance yields blurring in range, whereas increasing the bandwidth yields focussing in

range.

III. RADAR IMAGE SEGMENTATION

For a two-dimensional array, the output of TWRI, as considered in Section II, is a complex

3D image, representing the target reflectivity in the scene of interest. In the following, we

provide algorithms for image segmentation and feature extraction, and perform discrimination

in the image domain. Let Y (i, j, h) with 0 ≤ i < Ni, 0 ≤ j < Nj and 0 ≤ h < Nh denote the

absolute value of the 3D image with Y (i, j, h) ≥ 0, whereby Ni, Nj and Nh are the number

of voxels in range, crossrange (azimuth) and height (elevation), respectively.

Segmentation is the first step of the classification chain introduced in Figure 1. Given a

set of labels G, the aim is to assign a label x ∈ G to each voxel Y (i, j, h), 0 ≤ i < Ni,
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10
0 ≤ j < Nj , 0 ≤ h < Nh. For TWRI applications, we consider G = {0; 1}, i.e., each voxel

is assigned to belong to either background (x = 0) or target (x = 1).

We consider two common and widely used segmentation algorithms, the Iterated Condi-

tional Modes (ICM) [24] and the Levelset Method (LSM) [25]. We form vectorized through

wall radar images, where the elements are in lexicographic notation. A 3D image is thus repre-

sented as a vector y, where yn denotes its n-th element, n = 0, ..., N−1, with N = Ni·Nj ·Nh.

A. Segmentation using ICM

The ICM algorithm was initially proposed by Besag in 1986 [24] as a method to clean

images. Over the past several years, it has extensively been used as a segmentation tool. In

cases where the pdf classes for the different segments are known [26], [27], [28], [29], [30],

ICM proves to be an effective and computationally attractive method. Let x denote the true

underlying label field with xn denoting its n-th element, n = 0, ..., N − 1 and xn ∈ [0; 1].

Using a maximum a posteriori (MAP) approach, x can be estimated as

x̂ = arg max
x

{p(x |y)} (15)

which, using Bayes’ theorem and assuming conditional independence, can be written as

x̂ = arg max
x

{p(x)p(y |x)} = arg max
x

{
N−1∏
n=0

p(xn)p(yn|xn)

}
(16)

Here, p(y |x) is a conditional distribution which can be chosen according to the pdf class of

the different segments, and p(x) denotes the prior. Using the Markovian property [31], p(xn)

can be simplified by assuming that the prior probability of a voxel xn only depends on its

neighborhood rather than the whole image, e.g.,

p(xn) = exp (%#{xt ∈ Nxn|xt = xn}) (17)

where % > 0 is the so called attraction parameter, #{·} denotes the cardinal number of the set

and Nxn is the neighborhood of element xn. It is noted, that the assumption of independence

in Equation (16) is only an approximation as the width of the point spread function yields

correlation in the measurement of neighboring samples.

The estimate in Equation (16) is calculated iteratively to approximate the MAP estimate.
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ICM starts with an initial estimate of the label field x, which can, e.g., be obtained via

simple thresholding or more advanced methods such as the minimum cross-entropy thresh-

olding technique [32]. A new label field is then obtained by iteratively maximizing the

posterior distribution for every voxel, i.e., deciding for the new label x̂n which maximizes

exp (%#{xt ∈ Nxn|xt = xn}) p(yn|xn, gn). The procedure is continued until convergence is

achieved.

The question arises is how to choose p(yn|xn) and the neighborhood Nxn for the a priori

distribution. Considering the 3D neighborhood, different possibilities exist [33], depending

on the desired degree of smoothness in the segmented image. In the following, we restrict

ourselves to a 26-neighborhood for simplicity, meaning that a voxel depends only on such

number of its direct neighbors. Considering the conditional distribution p(yn|xn), the image

formation for TWRI has to be recalled, as per Equation (6). When the scene contains

point targets, the image reflectivity at a particular point in space can be modelled as a

zero-mean complex random variable where the real and imaginary parts are independently

Gaussian distributed with a common variance [34]. The absolute value of the image considered

in this and subsequent sections thus follows a Rayleigh distribution. However, it shall be

noted that the central limit theorem may not be applicable as the number of array elements

and/or frequencies used is too small in practice to permit the Gaussian assumption. Also,

Gaussianity may be invalid in imaging scenarios which deviate from the simple scenario

treated in Section II, e.g., when considering more complex wall effects, violation of the far-

field assumption and/or dealing with extended targets. In the sequel, we therefore consider

the Weibull distribution [12], [35] as a generalization of the Rayleigh distribution, allowing

more flexibility for data modelling. Thus, the pdf of yn is given by

p(yn|xn) =
κxn
λxn

(
yn
λxn

)κxn−1

exp
{
−
(
yn
λxn

)κxn}
; yn ≥ 0 (18)

where κxn and λxn are the shape and scale parameters of the Weibull distribution given label

xn, respectively. In each iteration, these parameters can be estimated for every segment via

the maximum likelihood principle as

(κ0, λ0) = arg max
(κ,λ)

∏
{yn|xn=0}

κ

λ

(yn
λ

)κ−1

exp
{
−
(yn
λ

)κ}
(19)
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(κ1, λ1) = arg max

(κ,λ)

∏
{yn|xn=1}

κ

λ

(yn
λ

)κ−1

exp
{
−
(yn
λ

)κ}
(20)

A typical segmentation result of a metal dihedral using the experimental data from Section

II are shown in Figure 9(a)-(c). Here, minimum cross entropy thresholding [32] was applied

to initialize the segmentation, and attraction parameters % ∈ {0.1, 1.5, 50} were used. A too

small attraction parameter practically neglects neighboring information/image correlation. This

generally yields larger segmented objects and may have unwanted effects such as merging

of different objects and noise effects. When choosing a very large attraction parameter (see

Fig. 9(c)) a large weight is set on neighboring information/image correlation. This yields to

small, concentrated objects around the target pixel intensity maximum. Effects of a very large

attraction parameter include unwanted splitting of objects with low pixel intensity correlation.

The same conclusions hold when the size of the local voxel neighborhood Nxn is changed

as dictated by Equation (17). Choosing an attraction parameter of % = 1.5 is a typical value

that is also used in other imaging applications [24]. It provides a reasonable tradeoff between

noise suppression and target distortion.

B. Segmentation using the Level Set Method

The ICM may not be suitable in all situations, especially when the pdf classes are unknown.

The pdf classes in TWRI depend on the imaging system and a large number of potential

targets. We therefore consider an alternative segmentation approach, namely the Level Set

Method (LSM), which was developed by Osher and Sethian [25]. Instead of relying on

statistical models, the LSM is a topology-based approach which makes it a highly attractive

tool in volumetric data reconstruction, e.g., in medical image processing.

In contour-based segmentation algorithms, such as the Active Contour Model [36], the

contour around one image segment is adapted to best fit to the corresponding image data at

hand. This is often achieved by varying the contour in such a way that a predefined energy

function is minimized. The key idea of the LSM is to fit a contour in a higher dimensional

space. The image segment is considered as the level set of the image plane and a surface of

a higher dimensionality. By moving the higher dimensional shape through the image plane,

the LSM adapts the image segment contour [25], [37], see Figure 10. One advantage of this

method is the capability to easily merge and split segments. Since the LSM theory holds for
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arbitrary dimensions, it can directly be applied to three-dimensional TWRI images.

The LSM relies on energy functions to be minimized in a higher dimensional space.

Classical energy functions, such as the geodesic contours [38] are based on image derivatives.

Radar images, including TWRI, however, do not typically show clear boundaries between

target regions and background. The images are rather smoothed, as the image is the result

of a 3D convolution of the target reflectivity and the system point spread function. Instead

of relying solely on image derivatives, we consider the energy function developed by Zhang

et al. [39], which includes image derivatives as well as a contiguous region term which can

cope with smooth target regions.

A typical segmentation result using the same example as above is shown in Figure 9(b). For

initialization of the LSM, a threshold on the normalized image of 0.3 was chosen, which gave

the best result in all cases. It is evident that both segmentation algorithms perform equally

well in this scenario.

IV. FEATURE EXTRACTION

The output of segmentation is a set of 3D candidate objects which, in the following,

are denoted as Oq, q = 0, ..., Q − 1, with Q denoting the total number of objects after

segmentation. Feature extraction maps each candidate object onto a feature space with a

compact representation, in which the object is described by a preferably small number of

parameters. In this section, we present two approaches for feature extraction; one is based

on statistical features, whereas the other is based on geometrical features. In both cases, it

is demonstrated how to map an object on the respective feature space and how to transform

the feature vector such that resolution-independent features can be obtained.

A. Statistical Features

As detailed in Section III, the Weibull model provides a good match to imaged target

characteristics and offers high flexibility to model target returns in TWRI images. Therefore,

it becomes intuitive to use the respective distribution parameters (κq, λq), representing the

q-th object as object descriptors. The parameters (κq, λq) can be estimated via maximum
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likelihood, similarly to Equation (20) as,

(κq, λq) = arg max
(κ,λ)

∏
yn∈Oq

κ

λ

(yn
λ

)κ−1

exp
{
−
(yn
λ

)κ}
(21)

Note that Equation (21) is computed at convergence of the ICM. It is further important to

note that Equation (21) cannot directly be used for target discrimination, since the obtained

features are not resolution-independent. Different objects at different locations imaged by

different radar systems may have a similar pdf which renders target discrimination unreliable.

As derived in Section II and summarized in Table I, the image intensity is dependent on

the bandwidth, the number of array elements and the target distance. Intensity-independent

features are provided by choosing

(κq, λq) = arg max
(κ,λ)

∏
yn∈Oq

κ

λ

(
ỹn
λ

)κ−1

exp
{
−
(
ỹn
λ

)κ}
(22)

where

ỹn =
yn

maxq{yn}
(23)

with maxq{yn} denoting the maximum voxel value in the q-th object. Practically, this means

that each object is normalized before feature extraction such that scaling factors due to system

transmitted power are compensated for.

B. Geometrical Features

Statistical features, such as the parameters of a Weibull distribution, provide important

information about an object under test, however, they ignore object features, such as shape,

extent in range, crossrange, and height. Superquadrics [40] present an effective method for

the geometrical description of 3D objects by few parameters. Superquadrics are used in the

sequel as an alternative, or additive, feature representation to that which is statistically based.

For simplicity, we restrict ourselves to superellipsoids where the implicit definition, without

considering rotation, is given as [40]:

FSQ (i, j, h) =

((
i

ai

) 2
ε1

+

(
j

aj

) 2
ε1

) ε1
ε2

+

(
h

ah

) 2
ε2

(24)
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where ε1 and ε2 which influence the circularity are the squareness parameters in east-west

and north-south direction, respectively. Most real objects can be assumed to possess a convex

shape which means that ε1, ε2 ∈ (0, 1]. The parameters ai, aj and ah denote the size in range,

crossrange, and height, respectively.

Let

φ
B

= (ai, aj, ah, ε1, ε2) (25)

denote the basic parameter vector of one superquadric without considering rotation. This

parameter can be estimated by non-linear least squares fitting as,

φ̂
B

= arg min
φ

∑
i,j,h∈Shell

(√
aiajah(FSQ(i, j, h;φ)ε2 − 1)

)2 (26)

where the superquadric representation, given a parameter vector φ, is denoted as FSQ(i, j, h;φ).

The sum is evaluated for all voxels on the object shell, further, scaling by √aiajah and

exponentiation by ε2 is typically applied [41] to avoid local minima. Note that FSQ(i, j, h) = 1

for all voxels on the superquadric shell. Thus, Equation (26) is minimizing the mean square

error between the object and the fitted superquadric shell. The optimization problem in

Equation (26) can be solved by, e.g., the Levenberg-Marquardt method [42], [43]. Due to

the non-linear optimization, the end result of superquadric fitting may strongly depend on the

initialization. Proper initialization of the size parameters ai, aj and ah is rather a simple task,

since the nominal size of the segment in range, crossrange and height can be discerned from

the image and used for this purpose. Further, Solina [41] explains that the initial value of the

shape parameters ε1, ε2 is not critical and suggests the unit value, which would consider an

ellipsoid shape for initialization.

1) Rotation and global deformations: Equation (24) denotes a simplified superquadric,

which may not be suitable to represent the diversity of possible target objects arising in

TWRI applications. We extend the above model by considering rotation as well as global

deformations to allow a more flexible superquadric fitting.

The rotation is performed by means of the tensor product, represented by a 3 × 3 matrix
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IT [41] as,

IT =
1

Nq

∑
(i,j,h)∈Oq


(j − j̄q)2 + (h− h̄q)2 −(j − j̄q)(i− īq) −(h− h̄q)(i− īq)

−(i− īq)(j − j̄q) (i− īq)2 + (h− h̄q)2 −(h− h̄q)(j − j̄)

−(i− īq)(h− h̄q) −(j − j̄q)(h− h̄q) (i− īq)2 + (j − j̄q)2


(27)

where Nq is the number of voxels in the q-th object and (̄iq, j̄q, h̄q) is the corresponding center

of gravity. The orthogonal rotation matrix R is then the matrix that diagonalizes IT as

D = R−1ITR (28)

where D is a diagonal matrix. A multiplication by R and R−1 leads to

RDR−1 = IT . (29)

Hence, R can be computed by eigenvalue decomposition.

The roll-pitch-yaw angles, also referred to as XYZ angles, are used to represent the rotation

of a superquadric. They are denoted as αi, αj and αh, representing rotation around the i, j

and h-axis, respectively. First, αj is determined by

αj = arctan(−R31,
√

R2
11 + R2

21)). (30)

where Rr1,r2 is the (r1, r2)-th entry in the 3 × 3 rotation matrix and arctan(·, ·) denotes the

two-argument arctangent [44]. The remaining angles are then given as,

αh =


0, αj = ±π/2

arctan
(

R21

cos(αj)
, R11

cos(αj)

)
, otherwise

(31)

αi =


arctan(R12,R22), αj = π/2

−arctan(R12,R22), αj = −π/2

arctan
(

R32

cos(αj)
, R33

cos(αj)

)
, otherwise

(32)

Note that by convention of the roll-pitch-yaw angles, an object is first rotated around the i-axis,

then j-axis and finally h-axis. The case differentiation is required to avoid singularities.

Though superquadrics can model a large variety of objects, there are shapes that cannot be
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fitted, such as cones. In this case, the global deformations tapering and bending can be used,

as proposed in [41]. Due to computational complexity, only tapering is considered herein.

For tapering along the h-axis, two new parameters, Ti and Tj , are introduced. The coordinates

(i, j, h) have to be transformed as:

itaper =
i

Ti
ah
h+ 1

jtaper =
j

Tj
ah
h+ 1

htaper = h

The order of performing the superquadric fitting steps, translation, rotation, deformation is

critical. In general, global deformations should be always performed before translation and

rotation [41].

We consider the following extended parameter vector

φ
SQ,R

= (ai, aj, ak, ε1, ε2, αi, αj, αh, Ti, Tj) (33)

representing all size, shape, rotation and deformation parameters. The parameter vector φ
SQ,R

can be estimated via nonlinear Least-Squares Optimization, as in Equation (26).

Again, φ̂
SQ,R

cannot directly be used for target discrimination, as the object shape is

position- and resolution-dependent. As shown in Section II and summarized in Table I, the

target image extent is dependent on the system PSF extent. We thus can obtain resolution-

independent features by normalizing the superquadric size parameters as

ãi = ai
PCrossrange,3dB

(34)

ãj =
aj

PRange,3dB
(35)

ãh = ah
PHeight,3dB

(36)

where PCrossrange,3dB, PRange,3dB and PHeight,3dB denote the (dimensionless) 3dB mainlobe width

of the system PSF in crossrange, range and height, respectively. Note that the other parameters,

such as rotation, global deformation, and squareness are per se resolution-independent and

do not need to be compensated for. The final single superquadric parameter vector is thus
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denoted as

φ
SQ

= (ãi, ãj, ãk, ε1, ε2, αi, αj, αh, Ti, Tj) (37)

It is noted that fitting a single superellipsoid is reasonable given the resolution at hand. For

high-resolution radar images, more complicated target models such as free-form deformations

[45] or concatenated superquadrics [46] would have to be considered.

V. TARGET DISCRIMINATION - EXPERIMENTAL RESULTS

We consider the scenario presented in Section II for evaluation of the proposed techniques.

It includes a metal dihedral imaged through a wooden wall. Using three different target

distance (4, 7 and 11 ft) and four different bandwidths (0.3, 0.5, 0.7 and 1.0 GHz), a total of

12 3D TWRI images are obtained. The same array aperture is used. In what follows, these

images are segmented using the Levelset method, although it should be noted that similar

results are obtained using the ICM.

Figure 11(a) plots the histograms of the 12 segments, imaged under different resolutions,

obtained using kernel density estimation [47]. The histograms differ in scale, as derived earlier

in Equation (13). Performing compensation, i.e., normalizing the image data between 0 and

1, yields the histograms in Figure 11(b), which now align and can be used for resolution-

independent target discrimination.

As proposed in Section IV, we consider the scale and shape parameters of the Weibull

distribution as features to represent an object under test. The results are depicted in Figure

11(c) (uncompensated) and (d) (compensated). Again, it can be observed that the parameter

estimates move closer together when using compensation which improves target discrimina-

tion.

As an alternative to the statistical feature extraction, we have proposed in Section IV

geometrical feature extraction using superquadrics. Two superquadric features, namely the

volume and the tapering parameter Ti are depicted in Figure 12(a). Here, the target volume

significantly changes with bandwidth. A small target volume size around 500 voxels is

obtained when using 1.0 GHz bandwidth (depicted as green crosses). When reducing the

bandwith to, e.g., 0.3 GHz, the volume increases to approx. 1300 (red crosses). Performing

compensation as per Equation (36), we obtain the scatterplot as in Figure 12(b) where the
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estimated target volume is concentrated in a small area.

Finally, we consider the problem of discriminating the dihedral object from others, which

may be considered as In Figure 13(a), the Weibull parameter estimates are plotted for clutter

objects (black crosses) and the dihedrals (blue triangles). Clutter objects stem from various

TWRI experiments and include non-dihedral objects such as tables, chairs and other calibration

objects. It can be seen that target discrimination is difficult as both classes are spread in the

same range. The same holds when considering the superquadric parameters as shown in Figure

13(c). Performing the proposed compensation, we obtain scatterplots as in 13(b) and 13(d),

where the dihedral features are now strongly concentrated and discriminable from the clutter

returns.

For the task of automatic target classification we consider the resolution-dependent (RD)

and resolution-independent (RI) feature vectors

ψ
RD

= (κq, λq, ai, aj, ak, ε1, ε2, αi, αj, αh, Ti, Tj) (38)

ψ
RI

= (κ̃q, λ̃q, ãi, ãj, ãk, ε1, ε2, αi, αj, αh, Ti, Tj) (39)

which consist of statistical as well as geometrical features. Classification is performed using

the Mahalanobis distance [48], assuming the feature vectors ψ
RD

and ψ
RI

to follow a

multivariate Gaussian distribution, respectively. The setup consists of 1 dihedral, imaged at

12 different system resolutions and 40 clutter objects. The clutter objects are chosen from

various 3D TWRI images which do not include dihedrals. A Leave-One-Out approach is

considered in which successively one of the 52 objects is removed and the remaining 51

objects are used for training. Table II depicts the probabilities of correct classification (a

dihedral is classified as dihedral) and false-alarm (a clutter object is classified as dihedral)

for the resolution-dependent and resolution-independent features, as well as for the ICM and

LSM segmentation algorithms.

As already suggested by the scatterplots in Figure 13, the proposed resolution-independent

features perform a compression in the feature space. This ultimately yields a smaller false-

alarm rate. For the simple example considered here, 100% correct classification with 0%

false-alarm can be achieved when using resolution-independent features. Further, it is noted

that the LSM algorithm performs slightly better than the ICM.
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It is noted that in this paper we considered the problem of obtaining features that are

independent of signal bandwidth, array aperture and target distance. Target orientation in

azimuth and elevation has not been modeled explicitly. Practically this means that the proposed

framework assigns separate classes for different orientations of the same object rather than

having a single object class that covers all orientations.

It is further noted that we assume perfect knowledge of the wall parameters and consider a

homogeneous wall. The proposed general classification scheme is independent of the actual

wall removal technique. Its individual steps, however, need to be adjusted when considering

highly complicated wall structures. This may include wall removal techniques that are based

on electromagnetic modeling of the wall. It also may include a more sophisticated segmenta-

tion that includes uncompensated wall effects as an independent class. Finally, the question

of robustness of features with respect to wall removal needs to be discussed.

VI. CONCLUSION

The problem of target classification in the image-domain with application to Through-

the-wall radar imaging was addressed. In this application, the imaging system aperture and

bandwidth as well as the pixel locations in range and aspect angle can influence the target

appearance in the 3D image and as such impact its classification. The paper considered

invariance to those parameters through a process of segmentation, feature extraction and

discrimination. Statistical as well as geometrical based features have been proposed to dis-

criminate targets from clutter returns in the image domain. Compensation methods aiming

at achieving resolution-independent features have been derived and applied to real data mea-

surements. The experimental results demonstrate the usefulness of the proposed methods as

desired target returns appear in clusters which are discriminable from clutter returns.
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Fig. 1. Through-the-Wall Radar Imaging Classification chain
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Fig. 2. Beamforming scheme for high resolution radar imaging
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Fig. 3. System point spread function varying with resolution
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Fig. 4. PSF cuts at 0 range and crossrange
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(a) PSF peak value vs K (b) PSF peak value vs L

Fig. 5. Linear relationship between the maximum pixel intensity and the number of array elements and bandwidth
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Fig. 6. The PSF spread as a function of the number of array elements, bandwidth and range

Fig. 7. Experimental setup
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Fig. 8. Target image changes with resolution

Resolution-Dependent Resolution-Independent

ICM Correct Classification 100% 100%
False Alarm 10% 2.5%

LSM Correct Classification 100% 100%
False Alarm 7.5% 0%

TABLE II
CLASSIFICATION RESULTS
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(a) ICM, ρ = 0.1 (b) ICM, ρ = 1.5

(a) ICM, ρ = 50 (b) Levelset Method

Fig. 9. Segmentation Results

(a) Initialization (b) Surface movement (c) Final result

Fig. 10. Principle of the Level Set Method
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(a) Target histograms, uncompensated (b) Target histograms, compensated
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(c) Parameter estimates, uncompensated (d) Parameter estimates, compensated

Fig. 11. Statistical feature compensation
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(a) Superquadric parameters, uncompensated (b) Superquadric parameters, compensated

Fig. 12. Geometric feature compensation
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(a) Parameter estimates, uncompensated (b) Parameter estimates, compensated
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(c) Superquadric parameters, uncompensated (d) Superquadric parameters, compensated

Fig. 13. Target/clutter clusters
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