
Radar Data Cube Processing
for Human Activity Recognition
Using Multisubspace Learning

BARIS EROL , Student Member, IEEE

MOENESS G. AMIN , Fellow, IEEE
Villanova University, Villanova, USA

In recent years, radar has been employed as a fall detector because
of its effective sensing capabilities and penetration through walls. In
this paper, we introduce a multilinear subspace human activity recog-
nition scheme that exploits the three radar signal variables: slow-time,
fast-time, and Doppler frequency. The proposed approach attempts
to find the optimum subspaces that minimize the reconstruction er-
ror for different modes of the radar data cube. A comprehensive
analysis of the optimization considerations is performed, such as ini-
tialization, number of projections, and convergence of the algorithms.
Finally, a boosting scheme is proposed combining the unsupervised
multilinear principal component analysis (PCA) with the supervised
methods of linear discriminant analysis and shallow neural networks.
Experimental results based on real radar data obtained from multi-
ple subjects, different locations, and aspect angles (0◦, 30◦, 45◦, 60◦,
and 90◦) demonstrate that the proposed algorithm yields the highest
overall classification accuracy among spectrogram-based methods in-
cluding predefined physical features, one- and two-dimensional PCA
and convolutional neural networks.
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I. INTRODUCTION

Recent studies have revealed that falls were the lead-
ing cause of fatal and nonfatal injuries for people aged 65
and over [1]. As a result, fall detection systems have been
identified as a major innovation opportunity to improve the
quality of life for elderly. Much attention has been recently
given to fall detection using the radio frequency sensing
modality. The rising interest in using radar for fall detec-
tion is a response to aging population requiring effective
elderly care and assisted living [2]–[4]. It is driven by the
ability to preserve privacy, and is propelled by advances in
machine learning and hardware-software integration.

Various contributions to radar fall detection have em-
ployed different features, both predefined and automatically
learned, to classify micro-Doppler signatures [5]. The fea-
tures can be speech inspired [6], derived from principal
component analysis (PCA) [7], [8], based on specific kine-
matics [9], or drawn from transform-domains. Examples of
transform-based features include discrete cosine transform
coefficients [10], and features derived from the cadence
velocity diagram [11], such as pseudo-Zernike moments
[12] and shape spectrum features [13]. Recent human mo-
tion classification efforts have applied deep neural networks
(DNNs) [14], [15]. DNNs, however, lack the availability of
large data size for proper training and performance valida-
tions. Moreover, DNNs are only applied on time-frequency
(TF) representations and their performance has not been
fully investigated on a challenging database, such as ours
with multiple subjects, locations, and aspect angles.

Radar backscattering signals from range-Doppler (RD)
radar, such as frequency modulated continuous wave
(FMCW), provide target information along the three vari-
ables of fast-time, slow-time, and Doppler frequency. Ac-
cordingly, two-dimensional (2-D) joint-variable signal rep-
resentations can be constructed, depicting the received data
in the TF domain, the RD domain, and the range ver-
sus slow-time (range-map) domain. Compared to a one-
dimensional (1-D) single-variable domain, the 2-D joint-
variable representations have shown the ability to reveal
intricate properties of the target complex motion, specif-
ically the time-dependency of target velocity. Each 2-D
motion data representation provides distinct and valuable
information that might not be present or difficult to extract
in other 2-D domains.

PCA is an unsupervised dimensionality reduction
method proposed to solve problems related to high dimen-
sionality. It reduces the dimensionality of an input data set
consisting of correlated variables into an output set of lin-
early uncorrelated variables, referred to as principal compo-
nents. The output set, with reduced dimensionality, attempts
to capture the variation present in the input data. PCA can be
seen as a smart compression technique, however, since the
principal components are uncorrelated, it can also be cate-
gorized as an automatic feature learning method, which has
proven effective, offering high fall classification rates [16].

Conventional PCA-based human motion classification
methods deal with one joint-variable representation of the
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radar data, whether it is TF, range-map, or their fusion. In
each case, we vectorize the 2-D data representation and use
the result to determine the principal components. General-
ized PCA, on the other hand, does not require a vectoriza-
tion step in the beginning and tries to find two projection
subspaces that operate on different modes of the 2-D joint
variable representation [17]. Variations of this approach has
been used in radar applications, more specifically for activ-
ity recognition [18] and gait abnormality detection [19]. In
this paper, we apply multilinear PCA (MPCA) to the radar
data cube (RDC), rather than lower-dimension processing.

This paper marks the first attempt to use three-
dimensional (3-D) joint-variable signal representation to
exploit the underlying dependency and correlations among
the three radar signal variables. Encouraged by the clas-
sification results of 1-D and 2-D PCA, and recognizing
possibilities for improvements, we pursue multilinear di-
mensionality reduction methods using a tensor analysis
[20]. A comparison between the baseline performances of
predefined physical features, 1-D PCA, 2-D PCA, a 12-
layer convolutional neural network (CNN) (all operate on
TF domain) and MPCA is provided to show the merits
of using RDC. We use a database that contains multiple
aspect angles, (0◦, 30◦, 45◦, 60◦, and 90◦), a large vari-
ance within class samples because of performing each mo-
tion with different speeds, and collecting data from dif-
ferent locations and subjects. Because of these data chal-
lenges, we propose a boosting scheme for RDC-based pro-
cessing where we combine MPCA with two supervised
methods, linear discriminant analysis (LDA) and shallow
neural networks (SNN), so as to increase the classifica-
tion performance. We also examine the underlying opti-
mization parameters and their effects on performance and
convergence.

The paper is organized as follows. In Section II, the
radar signal model and different joint variable domains
are presented. In Section III, multilinear subspace learn-
ing methods are introduced. In Section IV, the design and
optimization considerations of multilinear subspace learn-
ing methods are discussed in terms of iterative projections,
initialization, termination criteria, convergence, and num-
ber of projections. In Section V, we introduce a boosting
scheme of MPCA by combining it with two supervised
methods followed by decision fusion. Section VI presents
a comparison of specific subspace learning methods under
different RDC dimensions. Finally, conclusions are pro-
vided in Section VII.

II. RADAR SIGNAL MODEL

Commercially available FMCW radars are in a com-
pact form and have the ability to provide range, time, and
Doppler information. The radar system used in this paper
is SDRKIT 2500B, which is developed by Ancortek, Inc.
Operating parameters of this radar system are: transmitting
frequency 25 GHz, sampling frequency 1 kHz, and band-
width of 2 GHz, which provides 0.075-m range resolution.
The radar can switch between continuous wave and FMCW

modes and operates in a monostatic configuration, which
consists of one transmitting and one receiving antennas.

For an FMCW radar, the backscattering signal from a
target located at a distance R can be expressed as

srx(t) = Arx cos
(

2πj
(
f0(t − τ ) + r

2
(t − τ )2

)
+ φrx

)

(1)
where τ is the round trip time delay, f0 is the carrier fre-
quency, r is the chirp rate, φrx is the phase of the received
signal, and Arx is the amplitude of the received signal com-
puted from the range radar equation as

Arx = Gλ
√
Pσ

(4π)1.5R2
√
Ls

√
La
. (2)

Here, G is the antenna gain, P is the transmitter power,
σ is the target radar cross section (RCS), and Ls and La
represent the system and atmospheric losses, respectively.

The received signal is then demodulated by the I/Q
demodulator, providing the in-phase and quadrature-phase
components of the complex baseband signal, expressed as

s(t) = I (t) + jQ(t) = A expψ(t) (3)

where ψ is the phase of the signal. The sampled I/Q signal
can be transformed into a 2-D matrix representation where
the columns and rows, respectively, represent fast and slow
time variables. The range map can be computed by taking
the discrete Fourier transform along the matrix columns.
The range maps for different human motion activities are
depicted in Fig. 1(a) through (e). In Fig. 1(a), the human
subject falls toward the radar and, as a result, we observe
a high range spread, which is determined by the subject’s
height. Bending, kneeling, and sitting [see Fig. 1(b), (d),
(e)] have small range spreads because of the limited transla-
tional motion of the body in range. In the case of a walking,
subject starts walking toward the radar around 3.5 m away
and stops around 1 m, as it can be clearly seen in Fig. 1(c).

The Doppler information of the human motion activities
are often discriminative and descriptive of the nature of the
signal, its source, and the mechanism of its generation. Raw
slow time data, x(n), where n is the slow time, can be com-
puted by agglomeration of the range map along its range
axis (columns). The resulting data from the human (indi-
vidual being tracked) is nonstationary with time-varying
frequencies, which are associated with velocity, accelera-
tion, and higher order terms of different human body parts.
Spectrograms are the simplest and most commonly used
TF distribution. It is the energetic form of the short-time
Fourier transform, which is obtained by splitting the time-
domain signal into many overlapping or disjoint consecu-
tive segments, and then taking the fast Fourier transform
of each segment. This provides the signal’s local frequency
behavior. The spectrogram is mathematically defined as

S(n, k) =
∣∣∣∣
N−1∑
m=0

h(m)x(n−m)e−j2πkm/N

∣∣∣∣
2

(4)

where h(m) is a window function, which can affect both the
time and frequency resolutions. The TF representation of
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Fig. 1. Range maps of different motions. (a) Falling. (b) Bending. (c) Walking. (d) Kneeling. (e) Sitting.

Fig. 2. TF representations of different motions. (a) Falling. (b) Bending. (c) Walking. (d) Kneeling. (e) Sitting.

five different motions are provided in Fig. 2(a) through (e).
Note that, in the walking motion [see Fig. 2(c)], the torso
exhibits a sinusoidal pattern with the strongest return. The
periodic motion of the limbs causes frequency oscillations
modulated around the main Doppler shift. The motion of
the legs causes the highest frequency oscillation, followed
by that of the arms, which appear to be more distinct. Sit-
ting spectrogram, provided in Fig. 2(e), appears to be more
dense along the frequency axis because of the motion of the
upper body as a whole. Interestingly, in bending, positive
and negative frequency components are present within the
same time interval [see Fig. 2(b)]. As the upper body trans-
lates closer to the radar, the lower body (human back) moves
away from the radar. Kneeling motion has the same kine-
matics as bending with one significance difference; motion
of the knee. Kneeling is performed as in tying the shoelace.
Therefore, subjects put their one knee on the ground while
tying the shoe. This effect can be clearly seen in Fig. 1(d).
Fall spectrogram, shown in Fig. 2(a), depicts a sudden drop
in frequency in the shape of a positive “hump.” In falling,
the human subject puts the knee first on the ground to slow
down the fall and this effect can be clearly seen around 1.8 s
in the TF domain.

Compared to 1-D single-variable domain, the 2-D joint-
variable representations is more effective in human motion
classification. Each 2-D motion data representation pro-
vides distinct and valuable information that might not be
present in other 2-D domains. Acquiring all the informa-
tion, which is needed for better classification, often requires
a parallel processing of 2-D domains, which might result
in increased computational complexity and loss of infor-
mation present in the interrelation between the domains.
Therefore, we utilize a 3-D joint-variable signal represen-
tation to exploit the underlying dependency and correlations
among the three radar signal variables, namely, range, slow
time, and Doppler frequency. RD representation includes
the effects of both target velocity and range [21]–[23].

Typically, a single RD frame can be obtained by applying
the Fourier transform for each range bin over a nonover-
lapping coherent processing interval (CPI) of slow-time on
the range map. In this paper, the CPI is determined as 32.
We create a tensor structure, called RDC, by stacking con-
secutive RD frames. Visualization of the RDC is usually
done by a video sequence of RD frames, however, in [24],
RDC was visualized by creating a surface that has the same
intensity value within the slices of data cube. This can be
accomplished by isosurface method, which is a 3-D exten-
sion of an analog isoline. Volumetric representations of the
RDC for falling, bending, walking, kneeling, and sitting
are presented in Fig. 3(a) through (e), respectively. Note
that, RDC gathers fast-time, slow-time, and Doppler fre-
quency information in a single domain, aiming at increased
detection and reduced false alarms.

The first step of the our RDC extraction procedure in-
cludes a preprocessing approach called extended CLEAN
(eCLEAN) and aims at suppressing unwanted distortions
or noise effects while enhancing the natural structural in-
tegrity of the data. It is noted that the eCLEAN algorithm
directly operates on the individual RD frames. The original
CLEAN algorithm strives to find the highest peaks in an
image, which corresponds to a real target location. At each
step of the algorithm, the maximum peak is extracted, and a
portion of the point spread function centered at that peak is
subtracted until some threshold is met [24]. The number of
points, which are needed to be removed, are automatically
determined before extraction of peaks using a simple and
efficient histogram-based method. The output of the algo-
rithm is depicted in Fig. 4(c) when a noisy falling RDC data
are given in Fig. 4(a).

III. MULTILINEAR SUBSPACE LEARNING

In dimensionality reduction, the simplest approach con-
tains a preprocessing step where the original raw data
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Fig. 3. Multidimensional RDC representation of different motions. (a) Falling. (b) Bending. (c) Walking. (d) Kneeling. (e) Sitting.

Fig. 4. Visualization of a noisy falling RDC data. (a) Without any filtering. (b) After basic thresholding. (c) After proposed eCLEAN.

(spectrograms or range maps) are reshaped into vectors.
This operation is called vectorization or flattening, which
entails a high processing cost in terms of increased com-
putational time and memory access. For example, a typical
RDC of size (64 × 64 × 64) would translate into a vector
with a size of (262, 144 × 1 × 1) upon flattening. More-
over, it is well known that the reshaping operation breaks
the natural structure and correlation in the original data
[25].

In order to overcome the limitations and problems with
flattening, some approaches have been recently introduced
where the images are represented as matrices (second or-
der tensors) [20]. The image covariance matrix can then be
constructed. Spatial correlation of the image pixels within
a localized neighborhood is used to create a less restric-
tive PCA. However, these approaches cannot be applied to
higher other tensors (3 or higher). Since our RDC struc-
ture has three modes (slow time, range, and frequency), we
employ the MPCA proposed in [26]. In addition, we apply
multilinear discriminant analysis (MLDA) and compare its
performance with that of MPCA [27].

A. Multilinear Algebra Basics and Notations

This section briefly introduces basic multilinear nota-
tions, which are commonly used in multilinear subspace
learning algorithms. Vectors are denoted by lowercase
symbols, such as p; the normal uppercase symbols rep-
resent matrices, e.g., A. An Nth-order tensor is denoted as
X ∈ R

I1×I2···×IN . The implemented algorithms often require
reshaping of the data which, in the case of tensors, is called
unfolding, or matricization. Unfolding X along the n-mode
is denoted as X (n) ∈ R

In×(I1×···×In−1×In+1···×IN ). Finally, the

n-mode product of a tensor X by a matrix A is defined by
Y = X ×n A.

B. Multilinear Principal Component Analysis

The MPCA is an unsupervised subspace learning al-
gorithm for higher order tensors targeting the same ob-
jective function as in 1D-PCA: variation maximization
while reducing the dimensions along multiple modes. As-
sume a set of training tensor samples (m = 1, 2, . . . ,M)
given as Xm ∈ R

I1×I2···×IN . The objective is to find a tensor-
to-tensor projection (TTP) matrix subspace Ũ(n) ∈ R

IN×Pn
that projects the original tensors into low-dimensional ten-
sors Ym ∈ R

P1×P2···×PN (with Pn ≤ In). To project an RDC
sample, we utilize three projection matrices, U(1) ∈ R

I1×P1 ,
U(2) ∈ R

I2×P2 , and U(3) ∈ R
I3×P3 as

Ym = Xm ×(1) U(1)T ×(2) U(2)T ×(3) U(3)T . (5)

Note that Ym captures most of the variation observed
in the original RDC sample. RDC-based dimensionality
reduction procedure is illustrated in Fig. 5. It depicts the
TTP of an RDC (shown in individual RD slices) with a size
of (64 × 64 × 64) to a smaller size of tensor with a size of
(P1 × P2 × P3). Mathematically, the RDC-based objective
function can be expressed as the determination of the three
projection matrices that maximize the total tensor scatter

{Ũ(n)} = arg max
U(n)

M∑
m=1

∥∥Ym − Ỹ
∥∥2
F

(6)

where the mean of the projected tensor features is defined as
Ỹ = 1

M

∑M
m=1 Ym. After few iterations, the objective func-

tion converges to an eigenvalue decomposition problem
and can be solved by using Lagrangian optimization. The
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Fig. 5. Illustration of the RDC-based dimensionality reduction procedure through TTPs.

maxima of the objective function are obtained if {Ũ(n)}
consists of the Pn eigenvectors of the covariance matrices
(along each mode) corresponding to the largest Pn eigen-
values [25]. Since the computation of the approximation
is multilinear, iterative optimization of (8) can be solved
through a sequence of linear subproblems using alternating
least squares (ALS), whereby the least squares of the cost
function is optimized for one mode at a time, while keeping
the other mode subspace matrices fixed. Finally, the feature
tensor is obtained by projecting the original tensor using
optimized subspace, Ũ(n), as

Ỹm = Xm ×(1) Ũ(1)T ×(2) Ũ(2)T ×(3) Ũ(3)T . (7)

Then, feature vector of the mth training tensor can be
constructed as fm = vec

(Ym
)
, ∈ R

1×(P1×P2×P3), and vec(·)
is the matrix vectorization operator. This framework is fol-
lowed for each of the samples in the database and stored
in a matrix representation. Note that the dimensionality
of the projected tensor subspace, Pn, is assumed to be
known or predetermined. The effect of the Pn is shown in
Section IV in terms of classification accuracy and compu-
tational complexity.

C. Multilinear Discriminant Analysis

MLDA is a supervised algorithm aiming at maximiz-
ing the between-class scatter while minimizing the within-
class scatter in the projected subspace. In this paper, we
use the DATER algorithm to reduce the dimensionality of
the RDC in a supervised fashion [27]. Similar to MPCA,
DATER aims to solve the optimization problem through
TTPs {U(n) ∈ R

IN×Pn} by projecting the original RDC to a
low-dimensional tensor while maximizing a discriminative
objective criterion. Since MLDA is a supervised method,
class label for the mth RDC sample is defined as cm, and
there are C classes in total. In this specific application,
we have 5 classes and total of 827 training samples. The
objective function of DATER can be expressed as

{Ũn} = arg max
{Un}

∑C
c=1Mc

∥∥Ỹc − Ỹ
∥∥2
F∑M

m=1

∥∥Ym − Ỹcm
∥∥2
F

(8)

where Ỹ and Ỹc are defined as the overall and the class
means, respectively.

The above optimization problem can be treated as an
eigenvalue problem similar to MPCA. The objective func-
tion is maximized only if {Ũn} consists of the Pn eigenvec-
tors of the between-class and within-class scatter matrices
associated with the Pn largest eigenvalues. Feature extrac-
tion can be performed by following the same steps as in (7).

IV. OPTIMIZATION CONSIDERATIONS FOR MULTI-
DIMENSIONAL METHODS

A. Iterative Projections

TTP-based projections usually have N sets of parame-
ters forN projections matrices, one in each mode. TheseN
mode optimization problems cannot be solved simultane-
ously, except for the case with vectorization. Therefore, the
solution of one mode generally depends on the remaining
mode projection matrices. To overcome this problem, an
iterative algorithm, inspired by ALS, is employed for mul-
tilinear subspace learning, referred to as alternating partial
projections (APPs) [26]. This algorithm does not cover the
whole optimization space, hence, it can be categorized as
a suboptimal solution. The APP basically splits the under-
lying optimization problem into N conditional problems
that can be solved sequentially, one by one. In each mode
n, it solves the defined conditional subproblem through n-
mode partial multilinear projections utilizing the projection
matrices obtained from the other modes.

B. Initialization

Because of the iterative nature of the APP solutions, the
projection matrices have to be initialized at the beginning of
the algorithm. Then, with each iteration, initialization sub-
spaces are updated. Random initialization is one of the most
popular approaches where each element of the n-mode pro-
jection matrices is constructed from a zero-mean uniform
or Gaussian distribution. Another method for initialization
is called full projection truncation [25], which requires the
utilization of some of the training data.
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Fig. 6. Simulated falling RDC from motion capture data for individual
joint trajectories.

Since, we have a small database (827 samples), com-
pared with those in image recognition (approximately
1.5 million samples), we utilize a diversified simulation
database proposed for transfer learning of spectrograms.
This database is generated from 55 MOCAP measurements
of five different test subjects using a Kinect RGB-D cam-
era. The Kinect sensor is used as a markerless system for
capturing the time-varying coordinate information of hu-
man joints needed for radar simulations. The radar return
from the human body can be computed as the sum of the
reflected signals. For a human target, the RCS is repre-
sented by a sphere for the head, and ellipsoid for the torso
and limbs. According to these changes, simulation can be
computed by following the steps in the radar signal mode
by only adding the individual K received signals.

In this paper, four different activities were recorded,
namely, walking, running, falling, and sitting. Simulation
parameters are matched with the real radar system as: center
frequency of 25 GHz, sampling frequency of 1 kHz, and
bandwidth of 2 GHz. Three transformations are applied to
the underlying skeletal model tracked by the Kinect sensor:

1) Scaling in size, to capture the effect of different heights.
2) Scaling in time, to capture different motion speeds.
3) Random variation of the parameters in a Fourier series

model of the trajectory of different points on the body
to emulate the effect of different walking styles.

A more detailed description of the diversification
methodology and its validation can be found in [28]. Us-
ing this approach, original 55 MOCAP measurements were
used to generate simulations of 32 000 RDCs. An example
for simulated falling RDC is illustrated in Fig. 6. Consistent
with the arguments made earlier, the highest Doppler return
for falling is obtained from the upper body (head), followed
by torso, and lower body. The representation is also similar
to a real radar RDC shown in Fig. 3(a).

In image databases, initialization plays an important
role in both computational cost, speed of convergence,
and performance, albeit this role is both task and do-
main dependent. In the underlying problem, the diversified

Fig. 7. Convergence of diversified and random initialization for MPCA.

initialization achieves a much faster convergence compared
to random initialization, as depicted in Fig. 7, while gaining
an increase in the overall classification performance. The
convergence termination criteria is met within 3 iterations
with the proposed initialization method, whereas for ran-
dom initialization, it nearly takes 20 iterations to achieve the
same value. Clearly, these results prove the merit of using
the diversified database to initialize the subspace learning
methods.

In this paper, the optimized subspace matrices obtained
from diversified database are used in two different ways
[29]: 1) Bottleneck analysis: Diversified projection matrices
are directly utilized to extract the features from the real radar
data without any fine tuning (No training performed on
real radar data) and 2) Fine-tuning: Diversified projection
matrices are fine-tuned with the real radar data.

C. Termination Criteria and Convergence

In subspace learning, there are two commonly used ter-
mination criteria. In this paper, we examine the tensor dis-
tance between the original samples and the reconstructed
approximations. The approximation of the mth RDC sam-
ple can be expressed as

X̃m = Ỹm ×(1) Ũ(1) ×(2) Ũ(2) ×(3) Ũ(3). (9)

Then, the termination distance criteria can be defined as

d = 1

M

M∑
m=1

∥∥Xm − X̃m
∥∥2
F
. (10)

This distance is computed in each iteration and when it
drops below some user-defined hyper-parameter threshold,
the algorithm breaks and outputs the optimized projection
matrices. However, for computational considerations and
in order to avoid any infinite loops, we also set a maximum
number of iterations in case the algorithm would not con-
vergence. Note that this iteration is only for controlling the
convergence of the algorithm and different than the APP
iterations.
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Fig. 8. Visualization of agglomeration operator along different modes
for a walking sample. (a) Original. (b) Reconstructed.

Agglomeration along different modes in RDC will re-
sult in individual domains, such as TF (note that TF domain
is obtained without performing any TF techniques), range
map, and time-integrated RD map as depicted in Fig. 8(a).
To evaluate and validate our termination criteria, we also
analyze the reconstructed RDC (with only five components)
and perform the agglomeration on the reconstructed RDC,
as shown in Fig. 8(b). It is clear from the figure that the main
discriminative properties of these domains are still present
after the reconstruction only with five principal components
in each mode.

D. Number of Projections

Before solving the multilinear subspace projections, the
number of projections (P1, P2, P3) needs to be determined
for different modes. For the TTP-based method, the search
space could become very large, depending on the size of
the tensor (

∏3
n=1 In). For the RDC activity recognition task,

there are 262 144 possible subspace dimensions. There are
several ways to determine the number of projections used
in the projection matrices.

1) Q Metric: This metric is a suboptimal, simplified
dimension determination procedure that requires no itera-
tion or extensive testing [25]. We start with defining the

ratio as

Q(n) =
∑Pn

in=1 λ
(n)
in∑In

in=1 λ
(n)
in

(11)

where λ(n)
in

is the inth full-projection n-mode eigenvalue. In
the Q-based method, the first Pn eigenvectors are kept in
n-mode so that it ensures the user-defined threshold param-
eter. Q metric is an extension of the traditional dimension
selection in PCA. In essence, this method discards the least
significant eigenvectors in each mode and does not require
any classification.

TheQ(1),Q(2), andQ(3) ratios are provided in Fig. 9(a)
for different number of components. For mode-2, six com-
ponents are enough to capture 90% of the variation, whereas
for mode-1 and mode-1, it nearly takes 15 and 25 compo-
nents to exceed 90%, respectively. Another important ques-
tion is related to the prediction time, since the number of
components defines the number of features.

2) Brute Force Selection: In brute force selection, we
directly compute the classification performance for differ-
ent number of projections. However, this method does not
allow coverage of the entire feature space because the same
number of projections are used for each mode. The classi-
fication accuracies of MPCA are provided in Fig. 9(b) for
different numbers of projections. Moreover, the run-time
complexity (time elapsed per prediction) increases in this
process owing to the higher dimensionality search. This
specific phenomena is indicated in juxtapositions in the
same plot [see Fig. 9(b)] where the prediction time follows
nearly a linear trajectory for increased number of projec-
tions.

3) Genetic Algorithm (GA)-Based Multiobjective Pa-
rameter Selection: Qmetric does not guarantee any clas-
sification improvement, and brute force selection does not
span the whole projection space. Therefore, we take a more
heuristic and supervised approach where we attempt to find
the optimized number of projections in each mode, while
maximizing the classification performance together with
minimizing the prediction time per sample. This forms a
multiobjective optimization (MOO) problem and can be
formulated by considering a decision maker that seeks to
optimize K objective functions. Without loss of generality
and overfitting, all objective functions need to be the mini-
mization type. Given an n-dimensional (in our case n = 3,
(P1, P2, P3)) decision variable vector x = x1, . . . , xn in the
solution space. The main idea is to find a vector x̃ that
minimizes the given set of objective functions. The general
solution space generally restricted by a series of constraint,
such as the bounds on the decision variables (size of the
RDC). To describe the terminology of MOO, several expla-
nations have to be made at this point. A feasible solution
is said to be Pareto optimal if it is not dominated by any
other solution. A Pareto optimal solution cannot be im-
proved with respect to any objective without worsening
at least one other objective. The set of all feasible non-
dominated solutions in a solution space is referred as the
Pareto optimal set, and for a given Pareto optimal set, the
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Fig. 9. Determination of the number of projections. (a) Q metric along different modes. (b) Brute force classification with time elapsed per
prediction. (c) GA-based multiobjective parameter selection—Pareto plot—.

corresponding objective function values in the objective
space are called Pareto front. A more detailed explanation
about MOO can be found in [30].

GA can be categorized as a population-based optimiza-
tion approach, and because of their properties, they are
well suited for MOO problems. GA is inspired by the evo-
lutionist theory where in nature, weak and unfit species
within their environment are faced with extinction by nat-
ural selection. The strong ones have greater opportunity
to pass their genes to future generations via reproductions
[31]. Fitness functions of the GA are determined as the
classification accuracy and the computation time attained
by the minimum distance classifier (MDC). We employed
the NSGA-II, which is one of the most popular MOO algo-
rithms with three special characteristics: fast nondominated
sorting approach, fast crowded distance estimation proce-
dure, and simple crowded comparison operator. Resulting
Pareto plot can be seen in Fig. 9(c), where the two objec-
tive functions are plotted: classification error and prediction
time per sample.

V. BOOSTING THE MPCA

Boosting is an ensemble meta-algorithm for reducing
bias and variance in supervised learning. It is stemmed
by the question of whether a set of weak learners can be
boosted into an accurate strong learner. In this paper, the
boosting terminology used in a different sense, where two
supervised methods are attached to the features extracted
by MPCA. The idea is to extend the feature extraction
procedure by selecting more discriminative features from
fm (7). Therefore, we added two supervised method, LDA
and SNN, and fuse the achieved soft outputs in decision
level. The results were also computed where LDA and SNN
were used separately without any decision fusion at the end,
however, the achieved results were not satisfactory.

Since the core matrices extracted from the RDCs are
already vectorized, assume that SB and SW are to be the
between-class scatter and within class-scatter based on the
fm, respectively. Then, the corresponding LDA projection
matrix can be expressed as ULDA where it consists of the
generalized eigenvectors associated with the largest gener-
alized eigenvalues of the generalized eigenvalue problem.

Finally, the feature vector can be extracted as zm = UT
LDAfm

and given as an input to the classifier.
In this paper, an SNN is also implemented in the boost-

ing scheme. Weight elimination property of the neural net-
work is included by the back propagation algorithm to place
a penalty on the MPCA features with redundant informa-
tion in the fitted neural network model. Weight and biases
of neurons are learned such that the cost function J is
minimized. Given a set of training MPCA features and cor-
responding class labels, the cost function can be expressed
as

J (W, b) =
[

1

m

m∑
i=1

(
1

2

∥∥hW,b(fm) − cm
∥∥2

)]
(12)

where W and b are the weights and biases of the network.
hW,b is defined as the nonlinear hypothesis that provides
the classification. The cost function represents the error
between the input data and the neural net output. Back
propagation exploits these error values to compute the gra-
dient of the cost function with respect to the weights and
biases in the neural network. Afterwards, the gradient is fed
to the scaled conjugate gradient descent method, which in
turn uses it to update the weights and biases, in an attempt
to minimize the cost function. Finally, the output of the
fitted neural network is given as an input to the Softmax
regression classifier, which is a generalization of logistic
regression when there are multiple classes.

In the final step of the scheme, the soft classification
labels obtained from LDA and SNN are fused using the L-
place operators minimum, maximum, average, and product
as the aggregation rule F as

cFm = F
(
d1

(m,i), d
2
(m,i)

)
(13)

where d1
(m,i), d

2
(m,i) are the soft outputs (each class) of the

LDA and SNN, respectively. An illustration of the boosting
scheme is shown in Fig. 10.

VI. EXPERIMENTAL RESULTS

Two data sets were collected from two different in-
door environments. The first location is the Radar Imag-
ing Lab (RIL), which is a semicontrolled laboratory
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Fig. 10. RDC-based MPCA boosting scheme with LDA, SNN, and decision fusion.

TABLE I
Baseline Classification Performance Comparison Between 1D-PCA, Predefined Physical Features, 2D-PCA,

12-Layer CNN, and MPCA in Terms of Accuracy

Note that, only MPCA-MDC operates on the RDC.

environment, located at Villanova University, CEER Build-
ing. Back and rear walls of the RIL covered with pyramid
radiant-absorbent material to eliminate unwanted reflec-
tions and avoid any risk of measurement errors and ambi-
guities. In the RIL experiments, the radar was placed on a
table raised 3.2 ft above the ground and pointing directly
the back wall.

The second data set was acquired in the Center for Ad-
vanced Communications conference room located at Vil-
lanova University, Tolentine Building. This location is se-
lected to mimic an uncontrolled environment similar to a
senior residence apartment where an office furniture, such
as television, plants, tables, bookshelves, chairs, was used.
The radar was again placed on a table with a height of
3.2 ft. A Kinect was also located next to the radar in both
configurations to record the ground truth optical videos of
the motions.

Experiments were performed by 14 human subjects.
A total of 827 signals were collected from the test sub-
jects with posed heights ranging from 5.1 to 6.3 ft, weights
ranging from 119 to 220 lbs, and included 12 male and 2
female subjects. Five different motions were considered in
the experiments: falling (191 samples), sitting (213 sam-
ples), bending (203 samples), kneeling (108 samples), and
walking (112 samples). Motions were performed for five
different directions, namely, 0◦, 30◦, 45◦, 60◦, and 90◦.
Each subject performed the experiments with three different
speeds: slow (enacting as elderly people), medium, and fast.

We start the simulations by a comparison with 1D-PCA,
predefined physical features, 2D-PCA, a 12-layer CNN,
and RDC-based MPCA as depicted in Table I. Note that
the 1D-PCA, predefined features, 2D-PCA, and CNN are

applied on the spectrograms. The average classification ac-
curacies for 1D-PCA, pre-defined features, 2D-PCA, CNN,
and MPCA are determined to be 65.32%, 73.65%, 83.10%,
84.54%, and 91.4%, respectively. The MPCA produces
the lowest number of missed detections and highest fall
detection rate. In essence, MPCA performance is drasti-
cally higher than that achieved with existing commonly
used algorithms, demonstrating the importance of consid-
ering RDC in the application at hand. Then, we move
to compare four different RDC-based methods: MPCA
with MDC, MLDA with MDC, boosted-bottleneck per-
formance of the simulation projection matrices on real
data (BMPCA-Bottleneck), and boosted-fine-tuned-MPCA
(BMPCA-Fine-tuned). The classification accuracies are
provided in Table II for different dimensions of the RDC.
As we increase the dimension, the performances of the
RDC MPCA-MDC, BMPCA-Bottleneck, and BMPCA-
Fine-tuned also improve. The MLDA-MDC provides its
best performance as 87.22% when the dimensions are set
to (16 × 16 × 16). BMPCA-Bottleneck features provide a
good classification performance of 93.6%. Note that this
result is achieved only using the simulation projection sub-
spaces, proving the importance and merits of the initial-
ization step. Finally, the nearly perfect classification accu-
racy belongs to the BMPCA-Fine-tuned at a rate of 97.2%.
The confusion matrix performance for the test set given
by BMPCA-Fine-tuned is shown in Table III. The primary
source of misclassification is observed to be between the
classes of sitting and bending, with about 3.6% confusion.
This is not surprising as these two classes are most simi-
lar, and because our database contains different speeds of
motions.
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TABLE II
Classification Performance (on Test Data) Comparison for Different Dimensions of the RDC Between

MPCA-MDC, MLDA-MDC, BMPCA-Bottleneck, and BMPCA-Fine-Tuned in Terms of Accuracy

TABLE III
Confusion Matrix of BMPCA-Fine-Tuned Features on the Test Data

(TA: 97.20%)

VII. CONCLUSION

In this paper, we proposed an RDC-based multilinear
subspace method for human activity recognition. Utiliza-
tion of RDC offers an effective way to combine motion in-
formation from individual domains to capture cross correla-
tions and interdependency. The proposed subspace method
benefits from a single representation utilizing the entwined
relationship between fast-time, slow-time, and Doppler fre-
quency and their corresponding joint-variable domains. The
proposed RDC-based approach starts with a preprocessing
step called eCLEAN and attempts to suppress unwanted dis-
tortions and noise effects in the data. By employing MDC,
we demonstrated that the multidimensional PCA method
outperforms those based on predefined features, 1-D and
2-D PCA features, and a 12-layer CNN. We showed that
improved performance by RDC-based MPCA under di-
verse data repository can be achieved by using different
optimization techniques. We employed a transfer learn-
ing initialization and GAs-based optimization method to
find the optimum number of projections. Furthermore, we
introduced a boosting scheme with two supervised meth-
ods to enhance the classification performance attained by
the RDC-based MPCA. The proposed approach provided a
high classification accuracy of 97.2% for a 5-class activity
recognition problem.
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