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ADVANCES IN RADAR SYSTEMS FOR MODERN 
CIVILIAN AND COMMERCIAL APPLICATIONS: PART 1

Deep learning (DL) has shown tremendous promise in radar 
applications that involve target classification and imaging. 
In the field of indoor monitoring, researchers have shown 

an interest in DL for classifying daily human activities, detect-
ing falls, and monitoring gait abnormalities. Driving this interest 
are emerging applications related to smart and secure homes, 
assisted living, and medical diagnosis. The success of DL in 
providing an accurate real-time accounting of observed human-
motion articulations fundamentally depends on the neural net-
work structure, input data representation, and proper training. 
This article puts DL in the context of data-driven approaches for 
motion classification and compares its performance with other 
approaches employing handcrafted features. We discuss recent 
proposed enhancements of DL classification performance and 
report on important challenges and possible future research to 
realize its full potential.

Introduction
Radar has emerged as an important technology in such areas as 
commerce, defense, and security. Small, low-cost, solid-state 
and software-defined radar technologies have enabled new ci-
vilian radar applications in medical and automotive fields, ad-
vances in human–computer interaction, and the deployment of 
smart environments. The safety, reliability, portability, and af-
fordability of radar devices have made them prime candidates 
for use inside office buildings, homes, schools, and hospitals.

Radar possesses unique advantages that complement other 
sensors such as visual, infrared, acoustic, pressure, and wear-
able sensors. Radar sensors are noncontact devices that work 
under any lighting conditions, including darkness, and can 
even penetrate opaque objects such as tables or walls. Another 
attribute that has made radar especially attractive for indoor 
monitoring is that it does not violate the privacy of monitored 
individuals. Radar backscattering signals can reveal human 
motion independent of clothing, making it suitable for such 
environments as hospitals, assisted-living facilities, restrooms, 
bedrooms, and other locations where people would be uncom-
fortable in the presence of video cameras. Radar-based remote 
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health-monitoring technologies can directly benefit the elderly, 
whose worldwide population over age 65 is projected to 
increase to 1 billion in 2030. The development of in-home 
motion classifiers using radar is an integral part of the “aging-
in-place” paradigm that offers a sense of security and safety 
for elderly residents and their families. 
Although wearable devices are available 
to identify motion, especially falls, they 
are battery operated and depend either on 
accelerometers to detect motion or on the 
individual wearing the device to press a 
button. Radar offers a nonobstructive pas-
sive motion-sensing technology capable of 
notifying caregivers and first responders 
of critical events concerning the health and 
welfare of the observed individual. More-
over, sensing for smart environments and gesture recognition 
for device control have the potential to transform the way we 
live and improve quality of life globally by changing the way 
we interact with our surroundings.

Radar innovations for indoor monitoring have been made 
possible in part because of advances in machine learning, par-
allelization, and the speed of graphics processing units. These 
advances have led to substantial improvements in the perfor-
mance of deep neural networks (DNNs). In other fields, such 
as image and natural language processing, DNNs are now able 
to harvest extremely large amounts of training data to achieve 
record-breaking performance. This was demonstrated in the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), 
where the winner in 2015 used 1.2 million images to train a 152-
layer residual neural network (ResNet) for the classification of 
1,000 classes [1] 

In radar applications, fundamental differences in signal phe-
nomenology have driven the development of unique approaches 
to DNN design for human-motion classification. Radar data are 
not inherently acquired as images. Rather, the received signal of 
a radar unit is a complex time series, whose amplitude and phase 
can be related to the electromagnetic scattering and kinematics of 
the target being observed. Several preprocessing stages, such as 
filtering and TF analysis, are typically performed to generate 
1D, 2D, or 3D data for input. Two-dimen-
sional radar data representations are not 
typical images. They exhibit different 
properties from optical imagery, as each 
pixel value is now not just an intensity but 
a sample in time and frequency. This has 
driven the design of novel approaches 
to DL specific to radar. Recent work on 
radar-based classification has espoused 
a knowledge-aided signal processing 
approach that integrates the fundamen-
tals of physics, phenomenology, and 
modeling into DNN design and train-
ing to develop novel solutions tailored 
for sensing applications in the radio-fre-
quency (RF) domain.

Radar-based motion characterization relies on observa-
tions of the fluctuation in micro-Doppler frequencies induced 
in the received signal due to vibrations or rotations of parts of 
the body in addition to translational motion components. The 
unique kinematics of the bipedal human gait make the respec-

tive radar micro-Doppler signature markedly 
different from those of other living animals 
that could be present in a home, such as dogs 
or cats. Moreover, even finer differences in 
kinematics, corresponding to different daily 
human activities, are reflected in the intricate 
patterns of the micro-Doppler signatures. 
Figure 1 illustrates the radar micro-Doppler 
signature for daily activities, such as walking 
and picking up an object. These particular 
classes possess quite distinct profiles that can 

also be easily detected by normal visual observation.
Machine learning can enable automatic motion recognition. 

Conventionally, a set of handcrafted features is first extracted 
from the micro-Doppler signature, such as bandwidth and 
stride rate. However, the efficacy of such features depends on 
operational and situational factors [2], such as the transmit 
and pulse-repetition frequencies, observation duration (dwell 
time), signal-to-noise ratio, and aspect angle between observed 
motion and radar line of sight.

We recognize the promise in radar-based research to provide 
accurate and nonintrusive tracking of daily human activities. 
Recent results in DL for the use of radar in indoor monitor-
ing have reported performance superior to that of conventional 
machine-learning techniques, especially as the number and 
similarities between different classes increase. For example, 
in a seven-class problem of visually identifiable signatures, a 
support vector machine (SVM) classifier yielded roughly the 
same performance as that of a convolutional neural network 
(CNN) [3]. But, in a more difficult problem of classifying 12 
aided/unaided human gaits [4], the CNN outperformed SVM 
by approximately 13%.

As part of a broad, in-depth survey of the current state of the art 
in radar-based motion recognition using DL, DNN performance 
was compared to conventional machine-learning techniques and 

F
re

qu
en

cy

Walking Picking up an Object

Feet

Torso

Arms
Hips Move
Away From Radar

Torso Bends Toward Radar

Hip Motion
Reversed

Torso Motion
Reversed

Time

FIGURE 1. Two images showing sample 24-GHz FMCW radar micro-Doppler signatures for daily human 
activities.
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other data-driven approaches. Specifically, the following radar-
specific questions were considered:

 ■ Input data representation: What is the best way to process 
the raw, complex data stream for presentation to the input 
of DNNs?

 ■ DNN training: How can knowledge-aided approaches exploiting 
physics and modeling of human kinemat-
ics be developed to mitigate challenges of 
low training-sample support?

 ■ Pervasive sequential classification: How 
should novel architectures be designed 
to address optimal classification across 
multiple input representations to achieve 
high accuracy in recognizing the dynam-
ic, free-form flow of motion and activity characteristic of 
daily life?
We conclude the article with a delineation of ongoing chal-

lenges and future directions for DNN design in radar-based 
human-motion recognition.

Indoor monitoring
Research into the use of radar in civilian applications [5] be-
gan almost 20 years ago with work on life-sign detection. To-
day, applications run the gamut from the monitoring of daily 
activities in smart environments to home security, assisted 
living, remote health monitoring, and human–computer inter-
faces. Figure 2 depicts various applications along with their 
respective human-motion classes. Radar in assisted-living and 
remote health applications [6] has been used for the noncon-
tact measurement of heart rate and respiration and for detect-

ing conditions related to heart rate and respiration, such as 
sleep apnea or sudden infant death syndrome. The detection of 
falls is also an important application [7] as falling remains a 
leading cause of mortality and major injuries among the elder-
ly. Rapid response after a fall is critical to minimizing long-
term debilitation and maintaining the independence and qual-

ity of life of senior citizens [6]. As such, 
fall detection has become a prime area of 
research in health monitoring and in the 
development of sensing technologies for 
telemedicine and smart homes. The desire 
to reduce health-care costs, while also ex-
panding medical services to hard-to-reach 
rural areas, has driven research into the use 

of radar-based gait monitoring for medical gait analysis. Re-
lated applications could include, for example, detecting gait 
abnormalities [8] for fall-risk prediction, assessing recov-
ery from injuries, measuring progression of neuromuscular 
disorders and response to treatments, monitoring health after 
a stroke, evaluating balance, and characterizing pathological 
gait for physical therapy, disability, and rehabilitation.

Broader applications of human-motion detection and rec-
ognition are also being pursued for security and energy-effi-
cient smart-home applications. For example, occupancy (or, 
conversely, vacancy) sensing can be used for the intelligent 
operation of systems for the home, such as lighting systems or 
heating, ventilation, and air conditioning units. Beyond simple 
motion detectors triggered by fine motion, such as turning the 
page of a book, radar Doppler sensors can detect and classify 
larger-scale activity as well as vital signs. The unique patterns in 
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the micro-Doppler signature of individuals can also be ex  ploited 
to identify specific people [9]. Within the past two to three years, 
DNNs have been used to enable radar micro-Doppler signature 
classification sensors to count the number of people in a room 
[10], recognize individuals within groups of four to 20 people 
[11], and identify intruders from among known signatures of 
household members [12]. In fact, even the way people carry 
a weapon, such as a rifle, has been shown to reflect unique 
characteristics in the micro-Doppler signature, thus enabling 
applications for active-shooter recognition [13] and armed/
unarmed-personnel recognition [14].

The increased capability of radar-signal 
processing and machine-learning algorithms 
to recognize human motion has spurred 
 pa  rallel advancements in radar hardware. Re -
search in radar-based human-motion classifi-
cation has explored the use of a wide range 
of radar waveforms for this purpose at trans-
mit frequencies of 2.4, 5.8, 24, 60, 77, and 
even 94 GHz, including continuous wave 
(CW), frequency-modulated CW (FMCW), 
and pulsed Doppler radar; ultrawideband 
(UWB), ultrashort pulse, interferometric, and multistatic radar; 
dual-polarized radar; and even Wi-Fi and through-the-wall 
radar. Dual-use systems, which can achieve both occupancy 
sensing and vital-sign monitoring, have also been proposed 
using UWB impulse radars and hybrid FMCW–interfero-
metric radars. Miniaturization of FMCW radars at 60 GHz, 
such as the radar technology pioneered by the Google Soli sen-
sor [15], has driven radar-based gesture recognition [16]–[19] 
for the noncontact control of personal electronics, wearable 
devices, and vehicle consoles. Examples of motion-based com-
mands include pinching, sliding, and rubbing the fingers; swip-
ing, pushing, pulling, and tilting the hand; and drawing a virtual 
circle in the air. Automotive applications for driver safety 
include the multifunction integration of vital-sign monitoring 
with gross-movement recognition, such as the detection of a 
cell phone being used or of eye-blinking patterns that indicate 
drowsiness [20].

Radar data domain representations
The signal received by radar is an inherently complex time series 
that is, in general, a time-delayed, frequency-shifted version 
of the transmitted signal. The scattering from the entire human 
body, [ ],x n  may, in turn, be approximated using superposition 
of the returns from K  body parts. Thus, for an FMCW radar,
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Here, G  is the antenna gain, m  and Pt  are the wavelength and 
power of the transmitted signal, respectively; iv  is the radar 
cross section of the ith body part; Ls  and La  are system and 
atmospheric losses, respectively.

Thus, the kinematic motion and electromagnetic scattering 
properties of the human body are reflected in both the amplitude 
and frequency modulations of the received signal. Most work 
in human-motion classification has relied on the application of a 
time–frequency (TF) transform to present salient target kinematics 
to the DNN. Subtle differences in human motion can be observed 

in the joint-variable signal representation of 
TF and time–scale. TF analysis methods 
can be classified into linear transforms and 
quadratic TF distributions (QTFDs). The 
former includes short-time Fourier trans-
forms (STFTs), Gabor transforms, fractional 
Fourier transforms, and wavelet transforms. 
These transforms capture the signal’s local 
behavior in some ways. QTFD, on the other 
hand, aims at concentrating the signal power 
along the instantaneous frequency of each 
signal component. In the case of radar back-

scattering from a moving target, such concentration accu-
rately reveals the target velocity, acceleration, and higher-order 
terms. The Cohen’s class of QTFDs of signal ( )x t  is defined 
as follows [21]:
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where ( , )A i x  is the ambiguity function, x  is the time lag, i  
is the Doppler frequency shift, and [ ]F2 $  denotes a 2D Fou-
rier transform. The kernel ( , )i xU  has typically low-pass filter 
characteristics to suppress signal cross terms and preserve auto 
terms, leading to reduced interference distributions [21].

The most common TF representation used in micro-Doppler 
analysis is the spectrogram, denoted by ( , ),S t ~  which is the 
square modulus of the STFT, and a special case of (3). It can be 
expressed in terms of the employed window function, ( ),tw  as

 ( , ) ( ) ( ) .S t w t u x u du
2

~ = -
3

3

-
#  (4)

The target behavior in ( , ),S t ~  referred to as the micro- 
Doppler signature, depicts how target Doppler frequencies vary 
with time and reflects unique patterns caused by the target motion.

Supervised classification

Handcrafted features
The recognition of human motion through the classification of 
micro-Doppler signatures typically involves first extracting 
a set of handcrafted features before inputting into a classifier. 
The process of computing the spectrogram (micro-Doppler sig-
nature) converts the complex time series of radar measurements 
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also expanding medical 
services to hard-to-
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monitoring for medical 
gait analysis.
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into a 2D image. However, the radar data usually contain re-
flections from stationary objects in the room, known as ground 
clutter, which can obscure low-frequency components of the 
motion. A number of preprocessing steps can be implemented 
to isolate the micro-Doppler frequency components correspond-
ing to only the human motion of interest. Prior to the compu-
tation of the spectrogram, high-pass filtering or moving-target 
indication (MTI) filtering can be implemented for clutter sup-
pression, and range gating may be used to mitigate noise and 
clutter by isolating those data samples corresponding to the 
person’s  location.  Figure 3 gives an example of the effect of 
MTI filtering and range gating on the micro-Doppler signature. 
It has been reported [10], however, that filtering to remove clut-
ter weakens DNN performance because DNNs are able to ex-
tract information from signal components not masked by clutter. 
Once an image has been formed, thresholding and other image 
processing methods may also be used, if necessary, to further 
reduce unwanted artifacts and noise in the data. In handcrafted 
feature extraction, these types of preprocessing operations typi-
cally increase classification accuracy. A wide variety of features 
have been proposed over the years [22]:

 ■ Physical features: These are related to the physical charac-
teristics of target motion, such as Doppler bandwidth, 
stride rate, and the maximum/minimum of the Doppler sig-
nature envelope.

 ■ Transform-based features: These use the coefficients of 
transforms, such as the fast Fourier transform and discrete 
cosine transform (DCT).

 ■ Speech-inspired features: These features, originally de -
signed for use in speech processing, include mel-frequency 

cepstral coefficients and linear predictive coding (LPC) 
coefficients.
Features can be extracted not only from the micro-Dop-

pler signature but also from representations derived from the 
spectrogram, such as the cadence velocity diagram (CVD), 
which is obtained by performing a Fourier transform along 
each frequency bin of the spectrogram. The CVD measures 
how often the different velocities repeat (i.e., cadence frequen-
cies). Hence, it may be used to extract physical features, such 
as velocity and stride rate, or transform-based features, such as 
pseudo-Zernike moments.

Due to the curse of dimensionality, a subset of features is 
often selected using wrapper methods that iteratively search 
for the optimal subset or filter methods that use a metric, such 
as mutual information or distance. The selected subset of fea-
tures is extracted from each sample within a labeled set of 
training data and fed to a machine-learning algorithm, which 
attempts to find an optimal mapping of a feature space to class. 
The efficacy of the resulting model is evaluated through the 
application of an independent test data set to evaluate metrics, 
such as classification accuracy, specificity, and precision.

Data-driven feature learning
In contrast to handcrafted feature extraction, data-driven fea-
ture-learning methods can modify or adapt the process of ex-
tracting features by exploiting the knowledge gained from the 
analysis of the training data set. Figure 4 shows a flowchart 
comparing the processing involved with conventional classifi-
cation of micro-Doppler signatures using handcrafted features 
and data-driven feature learning.
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Principal component analysis
One unsupervised approach to data-driven feature learning is 
principle component analysis (PCA), a linear transformation 
of the data that finds the direction with the most variance. By 
also requiring that the basis vectors be mutually orthogonal, 
PCA ensures the process results in a representation with lower 
dimensionality. In conventional PCA, typically referred to as 
a PCA or 1D PCA, the spectrogram depicting each micro-
Doppler motion signature is vectorized and M  correspond-
ing vectors, ,xi  of the same class are used to form an N M#  
input data matrix ( ) .X x x xM1 2 f; ;=  PCA computes the rep-
resentation ,z W x= <  where the matrix W  is found from the 
eigendecomposition of the unbiased data covariance matrix: 

.X X W WK= <<  Extensions that preserve the 2D structure of 
the micro-Doppler signature are 2D PCA and generalized 2D 
PCA [23]. Whereas the former performs PCA on all row vec-
tors of the spectrograms, the latter considers the correlation in 
both rows and columns and removes redundancies across both 
variables. Both 1D and 2D PCA are effective for feature extrac-
tion and are especially suited for embedded implementations 
that require computational efficiency [24].

Autoencoders
DNNs [25] can be interpreted as a nonlinear extension to PCA, 
which could be implemented using a one-layer artificial neural 
network with linear hidden and activation units. One special 
case of neural networks is the autoencoder (AE), which uses un-
supervised learning to reconstruct the input at the output. In oth-
er words, for a given input vector ,x  the AE aims to approximate 
the identity operation ( ) .h x xw .  This is accomplished by using 
a symmetric encoder–decoder structure in the AE, as illustrated 
in Figure 5. First, the encoder computes a nonlinear mapping 
of the inputs as ,e Wx bi iv= +^ h  where v  denotes a nonlinear 
activation function, W  denotes weights, and b denotes the bi-
ases of the encoder. The encoded features are then decoded to 
reconstruct the input vector x  using ,z Wx bi iv= +u u^ h  where Wu  
and bu  are the weights and biases of the decoder, respectively. In 
unsupervised pretraining, the AE tries to minimize the recon-
struction error between output and input:

 ( ) .argmin J
N

x z KL p p1
i i

i

N

j

h

j
2

1 1

<i b= - +i

= =

^ ^h h/ /  (5)

Here, i  is a parameter vector that includes the weights and 
biases of both the encoder and decoder: , , , ;W b W bi = u u6 @  h  
denotes the number of neurons in the hidden layer; b  denotes 
sparsity proportion; and KL p p

h
jj 1

<
=

^ h/  denotes the Kull-
back–Leibler (KL) divergence between the Bernoulli random 
variables with mean p  and ,p j  respectively. The addition of 
the second term involving the sparsity parameter b  functions 
as a regularizer and prevents the network from learning the 
identity function.

If the decoder is removed from the network, the remaining 
encoder components can be fine-tuned in a supervised manner 
by adding a softmax classifier after the encoder. An impor-
tant advantage of AEs is that the unsupervised pretraining step 
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minimizes requirements for labeled training data sets. This 
means the AE is still effective even when only a small num-
ber of data is available. This advantage is particularly relevant 
for radar applications, where collecting a large number of 
measurements is time-consuming and costly, and where it 
is often not feasible to conduct experiments that span all 
expected scenarios and target profiles. For example, whereas 
the ILSVRC ImageNet database includes 1.5 million images, 
most work on classification of radar micro-Doppler signatures 
involve just 1,000–2,000 measured data samples.

CNNs
A highly popular alternative architecture is the CNN, which 
uses spatially localized convolutional filtering to capture the 
local features of input images. Basic features, such as lines, 
edges, and corners, are learned in the initial layers, while more 
abstract features are learned in deeper layers. CNNs typically 
comprise three types of layers: convolutional, pooling, and ful-
ly connected (see Figure 6). For a given matrix ,P  the mth neuron 
in the CNN calculates

, , , .M i j f x y P i x j y bm
k

k

x k

k

y 2 1

2 1

2 1

2 1

v= - - +
=- -

+

=- -

+

e o66 6@@ @//  (6)

The size of each side of the image is ,k2 1+  M  is the 
activation map of the given input ,P  fm  is the mth convolu-

tion filter, and v  is the nonlinear activation function. Gener-
ally, a max pooling layer follows each convolutional layer, in 
which local maxima are used to reduce computational com-
plexity in the forward layers, and adds translation invariancy 
to the network. Finally, fully connected layers are used to 
learn nonlinear combinations of extracted features from pre-
vious layers.

Unlike AEs, CNNs rely entirely on a large amount of 
labeled training data for supervised optimization of network 
weights. The objective function of CNNs is highly nonconvex, 
with the result that the parameter space of the model contains 
many local minima. Conventionally, network weights are ran-
domly initialized at the beginning of training. However, there 
is no guarantee that the local minimum to which optimization 
algorithms converge will also be optimum in the global sense. 
The use of a large training database increases the likelihood of 
convergence to a good, if not optimum, solution. In RF appli-
cations, where a large number of data may not be available, 
alternative approaches suitable to training under low sample 
support are required [e.g., convolutional AEs (CAEs) and 
transfer learning].

CAEs
CAEs combine the benefits of convolutional filtering in CNNs 
with the unsupervised pretraining of AEs. In CAEs, however, 
the encoder also contains convolutional layers, while the 
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Max Pooling Fully Connected Layers
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FIGURE 6. An illustration that shows how a CNN works.
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FIGURE 5. An illustration that shows how an AE works.
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decoder contains deconvolutional layers. The deconvolu-
tional filters may be defined as transposed versions of the 
convolutional filters or they may be learned from scratch. 
Moreover, each deconvolutional layer must be followed by 
an unpooling layer, performed by storing the locations of the 
maximum values during pooling, thus preserving the values 
of these locations during unpooling and zeroing the rest. 
CAEs implement a two-stage training process, where unsu-
pervised pretraining is used first to initialize network param-
eters, and then supervised fine-tuning with labeled measured 
data is used to optimize final values. Because the unsuper-
vised pretraining starts the optimizer at values closer to the 
global optimum, better performance is typically achieved on 
small training data sets.

Transfer learning
Alternatively, knowledge gained from a different domain can be 
exploited to initialize the weights of a DNN for radar classifi-
cation. As with CAEs, starting the supervised training process 
from a better set of initial weights reduces radar data require-
ments while also improving the classification accuracy. Pre-
trained models for VGGnet, AlexNet, GoogleNet, and ResNet 
have all been exploited for micro-Doppler classification. How-
ever, transfer learning from the optical domain has only out-
performed CAEs when there are few real radar training data 
(e.g., fewer than 550 samples [26]).

DNN performance for daily human activities
Let us now consider a case study that used a common data 
set to evaluate these various approaches. A software-defined 
radio platform was programmed to transmit a CW signal at 
4 GHz through two horn antennas of 48° beamwidth mount-
ed side by side 1 m off the ground. Each of the 11 partici-
pants conducted 12 daily activities, moving along the radar 
line of sight. The activities observed were walking, jog-
ging, limping, sitting, walking with a cane, walking with a 
walker, walking with crutches, crawling on hands and knees, 
creeping while dragging the abdomen on the floor, using a 
wheelchair, falling after tripping, and falling off a chair. 
A total of 1,007 measurements were collected. Each clas-
sification approach was tested using 10-fold cross validation 
unless otherwise noted. Given the limited measured data 
available, each method was first evaluated to determine the 
features or network structure that offered the highest clas-
sification accuracy:
1) Supervised classification with handcrafted features: A 

total of 127 micro-Doppler features were extracted: 10 
DCT coefficients, three cepstral coefficients, 101 LPC 
coefficients, and 13 physical features—bandwidth and 
mean of the torso response; minimum, maximum, and 
mean of the upper and lower envelopes; total Doppler 
bandwidth; difference between the means of the upper 
and lower envelopes; and fundamental, second, and 
third harmonics of the CVD. The best performance 
was achieved using 50 features selected by sequential 
backward elimination: the bandwidth of the torso 

response, mean torso frequency, mean of the upper 
envelope, mean of the lower envelope, first two CVD 
features, first two cepstral coefficients, 37 LPC coeffi-
cients, and five DCT features. A multiclass SVM clas-
sifier with a linear kernel outperformed polynomial 
and radial basis function kernels as well as random 
forest and xgboost classifiers.

2) 2D PCA: Generalized 2D PCA [23] was implemented 
where the projection was performed bilaterally on the 
rows and columns of the spectrogram, viewed as a 
matrix of dimension 128 × 128. The right (rows) and left 
(columns) projection matrices were of dimension 128 
× 15 and 15 × 128, respectively, describing 15 princi-
pal components. A 3k-nearest-neighbor classifier was 
implemented with the size of training, validation, and 
testing sets chosen, respectively, to be 80, 10, and 10% of 
the data.

3) AE: A three-layer AE with layers of 200, 100, and 50 neu-
rons, respectively, was found to yield the best results con-
sidering depth and width of the network. An adaptive 
moment estimation algorithm was used for optimization 
with a learning rate of 0.0001. The KL divergence term for 
regularization and sparsity parameter b  were chosen as 2 
and 0.1, respectively.

4) CNN: Two different convolutional filter sizes of 3 3#  and 
9 9#  were applied and concatenated in each convolutional 
layer. Three convolutional layers using 2 2#  max-pooling 
followed by two fully connected layers of 150 neurons 
each yielded the highest accuracy. To mitigate the potential 
for overfitting, 50% dropout was implemented.

5) CAE: The convolutional and deconvolutional layers of a 
three-convolutional layer CAE were populated with 30 
3 3#  and 9 9#  convolutional filters. After unsupervised 
pretraining, two fully connected layers with 150 neurons 
each were used with a softmax classifier.

6) Transfer learning from VGGnet pretrained on the 
ImageNet database: Although there are many possible pre-
trained models that could be exploited to illustrate transfer 
learning, VGGnet outperforms GoogleNet and performs 
similar to ResNet-50 on radar micro-Doppler data [27]. 
Significantly, this contrasts with the results of these same 
networks on ImageNet and underscores the fact that results 
or conclusions from other domains do not directly translate 
to the radar domain.
Figure 7 compares the performance of these techniques 

and two emergent methods, GA-FWCC and DivNet-15 (dis-
cussed in the section “Emergent Techniques for DNN Perfor-
mance Improvement in Radar”). The benefits of DL can be 
clearly seen as SVM offers just 76.9% accuracy in sharp con-
trast to the CAE at 94.2%. It is interesting to note that transfer 
learning from optical imagery yields only a slight improve-
ment in performance. Yet, VGGnet is a 16-layer CNN while 
the CAE, a significantly less complex network, has only three 
convolutional layers. These results underscore the impor-
tance of using source training data that closely match those 
of the target domain.
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Emergent techniques for DNN performance 
improvement in radar

Transfer learning from simulated data sets
As highlighted by the case study, the depth and accuracy of 
DNNs are extremely limited by the characteristics and amount 
of training data available. Because the collection of radar data 
can be costly, only small measured data sets are typically 
 acquired for training. Thus, the generation of simulated 
micro-Doppler signatures for use in training has been a  focus of 
recent research. One recently proposed technique [27] exploits 
the motion capture (MOCAP) data acquired from RGB-D (red, 
green, blue, depth) cameras to perform skeleton tracking and 
record the time-varying distance to various points on the hu-
man body. While high-accuracy MOCAP systems typically 
track reflective markers attached to the body, lower-cost mark-
erless skeleton tracking is also possible using such devices as 

the Kinect sensor. Thus, MOCAP data can provide estimates of 
the distance to K  points on the human body, which can be used 
in lieu of R ,n i  measured by radar. The model of the electromag-
netic backscatter provided by (1) can then be used to simulate 
the expected signal received by radar.

Because the skeleton corresponding to the motion being 
recorded by the Kinect sensor is accessible, transformations 
of the skeleton can be applied to generate new instances of the 
micro-Doppler signatures that correspond to different target 
profiles. This is essentially a form of data augmentation, a tech-
nique used in computer vision for creating minor alterations of 
the image (e.g., flipping, rotating, scaling) in an attempt to gen-
erate new samples and add to the training data set. However, in 
the case of radar, such transformations, when directly applied to 
the target 2D joint TF representation, would yield noninterpre-
table and kinematically impossible samples that would have an 
adverse effect on training. Instead, by applying transformations 
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on the source Kinect data and underlying skeleton tracking, alter-
ations can be induced that are consistent with the electromagnetic 
interaction of the RF waves with the target and its kinematics. 
Two possible transformations are extension or compression of the 
time axis to speed up or slow down the measured motion. Also, 
the physical dimensions of the skeleton can be scaled to account 
for smaller or larger people. Another possible transformation 
seeks to represent variations due to individual gait styles. This 
transformation can be obtained by perturbing the coefficients of 
the Fourier series that best fits the trajectory of each tracked point 
on the body versus time. Applying combinations of these trans-
formations permits a controlled simulation that spans the range 
of expected human motion for any radar system. Not only does 
this approach help with target generalization, but it can be used to 
build up a large number of simulated data from a small number 
of MOCAP measurements, thereby enabling deeper DNN train-
ing. Once the model for the received data is generated with (1), 
any desired data representation can be generated as training data. 
After network initialization using the simulated training data, 
only a small number of real radar data is required to fine-tune the 
training of the weights and test performance.

The efficacy of this training approach can be seen by apply-
ing the common data set in the case study described in the sec-
tion “DNN Performance for Daily Human Activities.” A Kinect 
sensor was used to collect 55 MOCAP measurements from five 
participants, none of whom were among the 11 participants 
from whom the radar data were collected. The diversification 
methodology, detailed in [27], was applied to expand the data 
set to 32,000 statistically independent samples, after which the 
spectrogram was computed. The spectrograms of both real 
and simulated domain data were computed to form a 2D input 
representation to the DNN. Because of the significantly larger 
amount of diversified MOCAP data available for training, the 
depth of the network could now be increased to 15 layers with-
out overfitting. Modified residual units were used to mitigate 
training errors. The resulting performance of the 15-convo-
lutional-layer residual neural network, labeled DivNet-15 and 

shown in Figure 7, yields the highest accuracy of the methods 
surveyed in this article: 95.2%.

In computer vision, generative adversarial networks (GANs) 
have been proposed to generate highly realistic simulated 
images. These networks have been successfully used to gener-
ate simulated data for the classification of synthetic aperture 
radar imagery. However, this approach has yet to be applied to 
the radar data generation of human micro-Doppler signatures. 
One problem is that variations in the synthetic data created by 
GANs may be unrelated to the underlying target kinematics. 
This could potentially result in the generation of mislead-
ing training data. Nevertheless, broad studies on the genera-
tion of synthetic radar micro-Doppler data with GANs deserve 
detailed investigation, with special emphasis placed on com-
paring the properties of that data with those of the diversified 
MOCAP data previously described.

Input data representations
Classification is typically not directly performed on the raw 
1D radar measurements, as this would drastically increase the 
computational cost and complexity of DNNs now forced to 
learn extremely high dimensional mapping between the raw 
data and motion classes. Instead, radar engineers have es-
poused a knowledge-aided approach using a number of tools, 
such as range processing, clutter mitigation, and TF analysis, 
to present a preprocessed form of the data that reveals salient 
target properties. The micro-Doppler signature, as computed 
with a spectrogram, has been the most commonly used in-
put data representation for motion recognition. Spectrograms 
highlight the variation in Doppler shift induced by human mo-
tion as a function of time, and thus provide the DNN with a 
valuable representation for feature learning. However, radar 
measures not just Doppler frequency or velocity but also 
target range. Researchers have shown increasing interest in 
joint-domain representations involving alternative ways of 
presenting the time-varying range and Doppler information 
to the DNN. Figure 8 shows that three types of 2D inputs can 
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be generated from the raw radar data: micro-Doppler signa-
tures, range maps, and range-Doppler images. The range map 
shows the variation of target position with slow-time, while 
range-Doppler images show both the tar-
get position and velocity. Analysis with 
multiple joint-domain representations has 
been shown to be more effective than when 
individual representations are used sepa-
rately [28]. These 2D representations are 
cross sections that can be expanded to a 3D 
representation, the radar data cube, which 
permits the use of the correlation and in-
terdependency among the three variables.

The 3D range-Doppler-time data cube has been used to 
improve fall-detection rates to more than 96% [29], while recent 
research on eight-class and 11-class hand-gesture recognition 
reports more than 85% accuracy in identifying motions for 
device control, such as a turning a virtual knob or moving a 
virtual slider. In [19], 3D input was generated by stacking time-
shifted versions of a fixed-duration micro-Doppler signature, 
while in [15], the range-Doppler image was stacked as a func-
tion of time.

An important motivation for seeking new ways to present 
radar data to the DNN is to better understand what the neural 
network learns. Activation maps and heatmaps are two ways 
to visualize network learning. Examination of activation 
maps has revealed, for instance, that various DNNs respond 
differently to spurious signals at the input [26], whereas 
heatmaps assign each pixel a relevance score that identifies 
the parts of the image that have the most impact on classifi-
cation performance.

Since spectrograms are not typical 2D images, frequen-
cy-based metrics, in addition to spatial metrics, have yielded 
great insights. Consider a frequency-warped cepstral analy-
sis, which has recently been proposed for data-driven clas-
sification. The approach is essentially a modification of 
mel-frequency cepstral analysis, first proposed for speech 
processing and poorly matched to the spectral  properties of 
radar micro-Doppler. Genetic-algorithm optimized frequency-
warped cepstral coefficients (GA-FWCCs) are tailored to the 
spectral properties of radar micro-Doppler. During training, 

the GA-FWCC of the center frequency and spectral width of 
each cepstral filter bank are optimized for maximum classi-
fication accuracy. The GA-FWCC’s efficacy can be assessed 

using the 12-class case study described in 
the section “DNN Performance for Daily 
Human Activities.” When 500 GA-FWCC 
features, generated from 10 optimized fil-
ters, are supplied to a single-layer, 50-node 
artificial neural network, a classification 
accuracy of 94.1% is achieved. This is on 
par with the accuracy of the CAE and just 
1% less than that of DivNet-15, as shown 
in Figure 7. The high accuracy achieved 

by GA-FWCCs highlights the frequency bands important 
for classification, as revealed by the GA-optimized filters. 
Thus, researchers looking into how to best present radar data 
to DNNs should work on designing attention-driven neural 
networks that exploit relevancy analysis in both spatial and 
frequency domains.

Recurrent neural networks
The methods surveyed so far have relied exclusively on cap-
turing a snapshot of the motion over a finite window of time. 
However, in daily life, human motion is a continuous stream 
of many different motions of varying durations. Moreover, 
natural human-motion sequences include not just short peri-
ods over which a well-defined action occurs but also transition 
periods during which the body repositions itself appropriately 
to perform the subsequent action. Consider, for example, the 
sequence of “walk–crawl–walk” depicted in Figure 9. The 
variation in micro-Doppler frequencies over the transition pe-
riod matches neither the characteristic of walking nor that of 
crawling. Accurate classification of daily human motion thus 
requires not only the ability to identify and parse long-duration 
signatures according to motion class, but also the ability to 
identify transition periods of varying duration.

While the sequential classification of dynamic motion 
remains an open problem, recent work exploiting recurrent neu-
ral networks (RNNs) has made important progress toward 
addressing this issue. RNNs produce an output at each time 
step and include connections between nodes that form a 
directed graph along a sequence. This structure enables RNNs 
to effectively model temporal dynamic behavior. Long short-
term memory (LSTM) RNNs model longer-term behavior 
through the inclusion of a memory block that consists of a 
cell, input, output, and forget gates. In gesture recognition, a 
combination of 3D inputs has been used with LSTM RNNs 
for classification [15], [19], but results were only presented 
for data samples containing a single motion class. Another 
RNN variant, which has been proposed for micro-Doppler 
analysis, is the gated recurrent unit (GRU). This approach has 
a simple structure and shows better performance on small 
data sets. In [30], a stacked GRU network was proposed for 
the sequential classification of micro-Doppler, where the 
micro-Doppler signatures of different activities were con-
catenated to generate a sequence of different motion classes. 

T1 T2 T3 T4Transitions

Stop StopWalk WalkCrawl

FIGURE 9. A micro-Doppler dynamic motion sequence recording walking, 
then crawling, then walking, with transitions (T1, T2, T3, T4) in between.

The micro-Doppler 
signature, as computed 
with a spectrogram, 
has been the most 
commonly used input data 
representation for motion 
recognition.
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This  network was shown to significantly outperform a CNN 
in classifying the entire sequence.

Challenges and future directions
The improved performance offered by DL has opened the door 
for the use of radar in a wide range of applications, which in 
turn drives more stringent requirements for pervasive and ro-
bust motion recognition. The main challenges facing indoor 
human-motion classifications using DL are the same as those 
for any other classification technique: specifically, developing 
devices that can achieve both high specificity and sensitivity 
while also being computationally efficient and inexpensive. 
Sensitivity is the ability to correctly classify a given motion, 
whereas specificity is the ability to correctly classify its nonoc-
currence. For fall detection, these measures translate, respec-
tively, into probability of detection and false alarm. However, 
for daily-activity and gesture recognition, a multiple-hypoth-
esis testing problem emerges with the goal of minimizing the 
probability of error. This goal must be achieved in a variety of 
indoor settings with many sources of clutter and interference. 
Specific challenges include:
1) Motion generalization: The radar micro-Doppler signature 

depends not just on the motion being performed but also 
on the physique, speed, and walking style of the individual 
being observed. The ability to generalize human motion to 
include unknown or unobserved people is critical to the 
credibility of the radar classifier. In essence, desired perfor-
mance must be maintained for a “generic” person. 
Innovations in human-motion modeling and simulations 
for DNN training have been introduced to address in-class 
variations. Another aspect of motion generalization relates 
to the fact that there is an infinite number of possible 
human activities. New approaches must, therefore, be 
designed to address the open-set problem, including cogni-
tion-inspired algorithms that can aid in generating and 
revising multimission classification problems.

2) Dynamic motion characterization: Human motion is an 
inherently dynamic time stream of actions, where an obser-
vation can include multiple types of motions as well as 
transitions in between. A key idea driving innovation in 
DNNs for radar applications is to integrate physics-based 
models with the DNN architecture, resulting in a knowl-
edge-aided approach to classification. The change in 
micro-Doppler during transitions, or even potential motion 
sequences, is not completely unknown or random but, 
instead, is constrained by the human body and its kinemat-
ics. The progression of micro-Doppler can be modeled a 
priori to understand what transition regions should resem-
ble. Moreover, the observation of daily habits can be used 
to generate the likelihood for certain motion sequences—
e.g., standing is more likely to follow sitting, after which 
walking is expected to follow. By determining the likeli-
hood, some motion classes can be discarded as too unlikely 
to occur. Such memory-based models can aid in motion 
sequencing as well as serve to limit the openness of the 
classification problem.

3) Personalized classification: Remote health-monitoring 
applications require the human gait to be characterized with 
great sensitivity to detect gait abnormalities. Such problems 
as imbalance play a role in fall-risk assessment as well as in 
post-stroke rehabilitation, while the long-term estimation of 
gait parameters is critical to the treatment of neuromuscular 
disorders. In such applications, the ailments involved cause 
such small differences that they can only be detected by a 
highly sensitive, “personalized” radar specifically attuned to 
the motion patterns of the individual being monitored.

4) Motion decomposition: Another important feature with 
applications to health and gesture recognition is the ability 
to separate and disentangle the micro-Doppler signatures 
from people near each other, as well as to isolate those 
motion components resulting from gestures versus gross 
body movements. The latter requires a high resolution in 
range and angle. Thus, while MOCAP has been helpful for 
synthesizing total micro-Doppler signatures from measure-
ments of body parts, the inverse problem of decomposing 
the micro-Doppler signature remains unsolved.

5) Pervasive recognition: In typical indoor environments, the 
radar line of sight may not always be aligned with the per-
son’s direction of motion. As the aspect angle increases, the 
bandwidth of the micro-Doppler signature decreases 
because radar is sensitive to radial velocity not absolute 
velocity. Moreover, it is likely that furniture or other objects 
may obstruct the line of sight and block the radar from 
observing part of the human motion. Through-the-wall 
radar and model-based approaches that take into account 
blocked signal components during training can mitigate 
some of these challenges. Multistatic radar networks have 
also been proposed to overcome some physical limitations. 
Researchers are looking into fusion, which are adaptive 
approaches driven by information sharing, and novel DNNs 
[9] that can facilitate multisensor exploitation, including 
passive Wi-Fi sensing.

Conclusions
This overview of DL for human-motion classification has 
covered a broad range of applications. The tremendous per-
formance gains offered by DL have been illustrated with a 
12-activity class case study in which the accuracy of a vari-
ety of DNNs was compared with that of conventional clas-
sification using handcrafted features and other data-driven 
approaches. A particular challenge to applying DL to radar 
has been the small amount of real data available for training. 
Unsupervised pretraining and transfer learning have been 
discussed as methods to overcome the limitation in depth 
and accuracy incurred with a small training sample. The val-
ue of integrating physics-based models into the DNN train-
ing process has been demonstrated to yield the highest clas-
sification accuracy of the compared methods. This is related 
as well to the way radar data are presented to the DNN using 
1D, 2D, or 3D input representations that best capture the sa-
lient spatial and frequency-based signal characteristics rel-
evant to classification. The development of novel approaches 
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that leverage advancements in DNN design and optimization 
with knowledge-aided radar-signal processing techniques 
will be key to addressing current challenges related to gen-
eralizing motion, characterizing the transient and sequential 
flow of motion, developing high-sensitivity personalized de-
vices, and designing robust, pervasive recognition systems.
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