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Deep neural networks have recently received a great deal of atten-
tion in applications requiring classification of radar returns, including
radar-based human activity recognition for security, smart homes,
assisted living, and biomedicine. However, acquiring a sufficiently
large training dataset remains a daunting task due to the high hu-
man costs and resources required for radar data collection. In this
article, an extended approach to adversarial learning is proposed
for generation of synthetic radar micro-Doppler signatures that are
well adapted to different environments. The synthetic data are eval-
uated using visual interpretation, analysis of kinematic consistency,
data diversity, dimensions of the latent space, and saliency maps.
A principle-component analysis-based kinematic-sifting algorithm is
introduced to ensure that synthetic signatures are consistent with
physically possible human motions. The synthetic dataset is used to
train a 19-layer deep convolutional neural network to classify micro-
Doppler signatures acquired from an environment different from that
of the dataset supplied to the adversarial network. An overall accuracy
of 93% is achieved on a dataset that contains multiple aspect angles
(0◦, 30◦, and 45◦ as well as 60◦), with 9% improvement as a result of
kinematic sifting.
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I. INTRODUCTION

Over the past decade, radio frequency (RF) sensing
has gained increased attention as its efficacy and unique
advantages have been demonstrated for a variety of automo-
tive, smart home, human computer interaction, and remote
health monitoring applications [1]–[8]. Radar systems are
both low cost and low power, making them a safe sensing
alternative, which can operate in darkness and all weather
conditions. Moreover, radar is noninvasive, and when used
for monitoring, does not require an alteration in daily habits
or routines. These attributes have made RF sensing popular
in motion monitoring.

Meanwhile, progress in machine learning and Internet of
Things is rapidly growing the expectations and performance
requirements of ubiquitous sensing. Radar-based gesture
recognition for man-machine interfaces requires an ability
to recognize slight differences in hand motions, separating
gestures intended to give commands versus daily hand
movements [9]. Biomedical applications of abnormal gait
analysis, fall detection, fall risk assessment, and monitor-
ing of hip/knee operations or neuro-muscular disorders,
also require high sensitivity and specificity, consistent with
medical standards [10]–[13]. Thus, even slight increases in
accuracy and robustness are considered significant in the
advancement of indoor radar technology and its adoption
in smart homes and medical diagnosis.

Deep neural networks (DNNs) have shown great po-
tential to achieve high accuracy, even as the number of
classes increases, and may well lead the way as a preferred
method for motion classification in the near future [14]–
[19]. However, DNN architectures in RF applications are
often limited by the fact that only small datasets are available
for training, as data acquisition can be time consuming,
costly, and limited in terms of the scope of scenarios and
targets sampled. This impacts not only DNN depth, but also
the ability of the DNN to generalize across different body
types, speeds, and motion classes [20], as well as adapt to
different noise sources and environmental conditions.

Researchers have attempted to overcome this challenge
by data augmentation, where the available radar data is mod-
ified through operations such as translation, time shifting,
and segmentation [21], [22]. However, in RF applications,
these approaches may not necessarily lead to statistically
independent training samples that effectively span probable
variations in target signatures. This is because the pixel
values in the 2-D data representations, generated through
time frequency (TF), analysis are related to the complex
electromagnetic scattering and kinematics of the dynamic
target being observed. Radar returns from a moving target
include not only a central Doppler shift, resulting from
translational motion, but also micro-Doppler frequencies
induced by slight rotations or vibrations of parts of the tar-
get [23], [24]. In humans, micro-Doppler frequencies derive
from the unique, bipedal, time-varying kinematics of human
motion, and varies even for the same activity depending
upon body size, speed, and individual gait style. Thus, meth-
ods for data augmentation motivated by image processing
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applications, such as scaling and rotating, may significantly
disrupt RF data patterns by generating samples that are
kinematically untenable. The inclusion of such physically
impossible samples in the training data has adverse effects,
and compromises rather than improves performance.

To overcome these limitations, a simulation method-
ology rooted in kinematic modeling [25]–[27] via mo-
tion capture was recently proposed in [28]. Instead of ap-
plying pixel-based data augmentation, transformations to
the underlying skeletal model were applied to generate a
large number of unique but kinematically consistent micro-
Doppler signatures spanning expected target profiles. A key
disadvantage, however, is that the approach does not provide
a means to account for the variations in signal-to-noise ratio,
artifacts of sensor-related electronic interference, signal
dispersion caused by frequency dependent obstructions, like
walls, or nontarget related motion (e.g., spinning ceiling
fan).

Generative adversarial networks (GANs) have been
proposed for synthesizing realistic images in a variety of
applications [29], including synthetic aperture radar [30].
An early effort at applying adversarial learning to synthetic
data generation of micro-Doppler was first proposed in
2018 [31], in which a deep convolutional GAN (DCGAN)
was used to generate synthetic data that emulated the Boulic
walking model. The Boulic model consists of mathemati-
cally well-defined trajectories and, therefore, does not rep-
resent the spectral richness and intricacy of actual, measured
micro-Doppler signatures. By using such pristine and sys-
tematic simulated data to drive the DCGAN, replicas of the
data were easily generated and nearly identical.

In another study [32], 150 simulated spectrograms were
augmented with 1000 GAN-generated spectrograms to clas-
sify a test set of 50 simulated signatures comprised of
three activity classes: running, walking, and jumping. A
4% increase in classification accuracy was noted. However,
only a small number of samples were generated by the GAN,
and the classes considered are easily identifiable so that the
simulation study was not designed to vet the validity, merits,
or detriments of using GANs to simulate micro-Doppler
signatures.

The first study exploiting adversarial learning for the
classification of real micro-Doppler data was published
in [20], where Yang et al. evaluated the efficacy of adversar-
ial learning for addressing the open-set problem—the case
where the training dataset does not include all the classes as
the test dataset. Subsequent studies in [33] and [34] utilized
GANs for mitigating the problem of low sample support and
reported the classification accuracy of DNNs trained with
GAN-generated synthetic data for human activity recogni-
tion.

In fact, the ability of GANs to synthesize authentic
radar micro-Doppler signatures is hampered by differences
between radar phenomenology and optics. The values of
pixels in micro-Doppler signatures relate not to physical
shapes, but instead to human kinematics. It is, thus, possible
for GANs to generate numerous synthetic samples that,

while visually similar, are incompatible with the kinematics
of human motion.

The work in this article is developed concurrently with
that of [33], [34] and provides, to our knowledge, the first
in-depth analysis of GAN-generated synthetic data in terms
of kinematic fidelity and diversity. In particular, we propose
the utilization of auxiliary classifier generative adversar-
ial networks (ACGANs) [35], as opposed to conditional
variational autoencoders (CVAEs) [36], for the generation
of synthetic micro-Doppler signatures with greater diver-
sity and sharpness. The issues of kinematic fidelity of
the ACGAN-generated synthetic data are illustrated using
physics-based rules applied to walking and falling motion
classes. The relationship between kinematic fidelity and
the dimensionality of the latent space as well as sample
diversity is also examined. We propose a new technique for
kinematic sifting based on principal component analysis
(PCA) to eliminate the kinematically impossible samples
from the synthetic training dataset and, as such, limit their
corrupting effects on performance. This underlies the im-
portance of considering kinematics when generating syn-
thetic micro-Doppler signatures using adversarial learning.
The proposed technique achieves a 9% improvement in
performance over that attained if the ACGAN-generated
signatures are used directly for training, without kinematic
sifting.

Finally, we show the benefits of ACGAN-generated
synthetic data to adaptation to different sensing locations
and environments. A small number of measured radar data
collected from one location (with multiple aspect angles: 0◦,
30◦, 45◦, and 60◦) is used by ACGAN to grow the synthetic
dataset for training, while the test dataset is collected at
a different location in a through-the-wall configuration. A
19-layer convolutional neural network (CNN) trained using
the kinematically sifted data generated by the ACGAN is
shown to yield a high 93% classification accuracy across
different environments.

This article is organized as follows. In Section II, the
experimental radar measurements conducted in two distinct
locations and environments is described. In Section III, the
generative model, ACGAN, is discussed in relation to an al-
ternative generative model, CVAE. In Section IV, diversity,
accuracy, and kinematic fidelity of the ACGAN-generated
synthetic images are evaluated. In Section V, classification
with PCA-based kinematic sifting of ACGAN-generated
synthetic data for training a 19-layer CNN in a scenario
involving adaptation across two distinct environments is
presented. Discussion of the conclusion and future work
is provided in Section VI.

II. RADAR MICRO-DOPPLER MEASUREMENTS

Commercially available continuous-wave radars are
compact in size and provide a measurement of Doppler
frequencies as a function of time. The radar system used in
this article operates at a transmitting frequency of 25 GHz,
sweep time of 10 ms, while collecting 128 samples per
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sweep. Thus, the received radar signal is highly oversam-
pled at a rate of 12.8 kHz [37]. A higher sampling frequency
causes the spectrum to shrink and cluster around the origin,
leaving considerable vacant space in the time-frequency
domain. Therefore, during preprocessing, the received radar
signal is first downsampled to 1.2 kHz. The power output
and antenna gain of the radar are 16 dBm and 18 dBi,
respectively.

A. Time-Frequency Representation: Spectrograms

Human activity recognition is typically accomplished
through identification of unique patterns in the radar micro-
Doppler signature, a time-frequency representation of the
radar received signal [38]. Quadratic time-frequency distri-
butions are considered a powerful tool for the analysis of
time-varying signals, with spectrograms being the simplest
and most commonly used TF distribution [39]. Spectro-
grams are the energetic form of the short-time Fourier
transform (STFT), which is obtained by splitting the time
domain signal into many overlapping or disjoint consecutive
segments, and then taking the Fourier transform (FT) of
each segment. A spectrogram thus exposes the signal’s local
frequency behavior and is mathematically defined as

S(n, k) =
∣
∣
∣
∣
∣

N−1
∑

m=0

h(m)x(n− m)e− j2πkm/N

∣
∣
∣
∣
∣

2

(1)

where h(m) is a window function, which can affect both the
time and frequency resolutions. The window slides over the
data to capture the instantaneous frequencies. The amount
of overlap is variable, so that the window could slides one
or more samples each time. At each window time-position,
the local frequency behavior is emphasized through the
windowed FT. The window length trades off spectral and
temporal resolutions, with long windows providing high
frequency resolution, whereas short windows offer high
temporal resolution.

Optimal sampling frequency and STFT parameters can
be found using a grid search; however, this might not
lead to a global optimum since the parameter step size
is determined manually. Therefore, we used data-driven
optimization with genetic algorithms (GA) to determine the
optimum hyperparameters of the STFT and the sampling
frequency, while maximizing the classification performance
achieved by generalized PCA (GPCA) and minimum dis-
tance classifier (MDC). For one set of hyperparameters,
GPCA is used to reduce the dimensionality and extract
features in time and frequency, which are subsequently
provided to the MDC. Classification accuracy is used as
the fitness function of the GA, while the GA structure was
selected as NSGA-II—one of the most popular multiobjec-
tive optimization algorithms [40].

The upper and lower bound of the hyperparameters
are determined as: sampling frequency 200 Hz–12 kHz,
window length 64–1024 (in samples), overlapping length
64–1024 (in samples), and number of FFT points 128–4096

(in samples). Only one constraint is forced into the opti-
mization procedure, namely, that the window length must
be greater than the overlapping length.

Based on this approach, in this work, spectrograms
are generated using 1024 frequency samples, a Hanning
window of length 512, and an overlap of 256 samples.
Note that after the spectrograms are computed, they are
converted to grayscale prior to input to the ACGAN and
CVAE. Before the preprocessing for the clutter mitigation,
spectrograms were converted to grayscale and resized into
100× 100× 1. This is the final dimensionality of the inputs
provided to generative models and the 19-layer CNN.

B. Experimental Datasets Collected

In this article, eight different activities are considered as
follows.

1) Bending—person stands and moves torso from a ver-
tical to horizontal position, resulting in both positive
and negative frequency components over the same
time interval. Positive frequencies result from the
forward movement of torso, coupled with negative
frequencies due to the posterior moving away from
the radar.

2) Falling—person falls forward onto a mattress, re-
sulting in the shape of an upside-down bow in the
signature. We only consider nonprogressive falls,
which exhibit relatively high Doppler frequencies.

3) Gesturing—gross arm motion, such as by moving the
arm up and down to turn the TV ON/OFF, or pointing
a lamp with different orientations to turn it ON/OFF.

4) Standing—in-place motion of a person to standings
up from the sitting position.

5) Kneeling—person lowers position to set one knee
on the ground, as one would when tying shoelaces.
This results in a distinct spike in the micro-Doppler
signature.

6) Reaching—person extends torso and arms upward
from a sitting position.

7) Sitting—person is standing upright, then sits on a
chair.

8) Walking—micro-Doppler signature exhibits a dis-
tinct sinusoidal pattern for the strongest return
caused by the slight up-and-down motion of the torso
incurred as a function of time. The periodic forward-
backward motion of the arms and legs results in
higher amplitude, periodic oscillations modulated
around the main Doppler shift. Leg motion causes the
highest frequency oscillation, followed by that of the
arms, which appear at distinct, midlevel frequencies.

A sample spectrogram for each class collected in two
different settings is shown in Fig. 1. To create an envi-
ronment for radar measurements different for training and
testing data, we placed the radar in an adjacent room with
obstructed line-of-sight (LOS) to the target through an
interior wall. The LOS dataset was acquired from the Radar
Imaging Laboratory, while the dataset associated with an
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Fig. 1. Real spectrogram images (after all preprocessing) of different human activities.

obstructed LOS was acquired at the Center for Advanced
Communications (CAC) conference room, both located at
Villanova University. The latter sensing environment is
meant to generate through-the-wall radar (TWR) dataset.
The radar was placed on a table with a height of 3.2 ft
for both of the locations. In the LOS experiment, a total
14 participants were involved in the data collection (12
males and two females), who had heights ranging from 5.1
to 6.3 ft, and weights ranging from 119 to 220 lbs. All
activities were conducted for three different walking angles
(0◦, 30◦, and 45◦) and three different speeds (slow, typical,
and fast), resulting in a dataset that covers a wide variety
of motions with sufficient intra- and interclass variance. A
total of 1586 samples were collected, with the number of
samples per class shown in parenthesis as follows: bending
(167), falling (350), kneeling (216), gesture (150), reaching
(140), sitting (233), standing (130), and walking (200).

In contrast with the LOS dataset, the radar and test
subject were separated by a plywood wall. Subjects started
the motion 5 m away from the wall and after 4 s of data
collection experiment is repeated. Experiments included
both moving towards and away from the radar. The TWR

dataset was conducted at four different angles, including
0◦, 30◦, and 45◦ as well as 60◦. The test subject in the
TWR experiments was a male participant, who was not
part of the LOS data collect. A total of 387 TWR samples
were collected, with bending (50), falling (72), gesture (50),
kneeling (15), reaching (50), sitting (50), standing (50), and
walking (50). A summary of the LOS and TWR datasets is
given in Table I.

In this article, the LOS dataset was used in conjunction
with the ACGAN for training data generation, while the
TWR dataset was used for testing. Note that the visual
similarity between 7 of 8 classes (walking is the excep-
tional class), inclusion of multiangle measurements, and
difference in environment makes this classification problem
relatively more challenging [41] in comparison to other
scenarios considered in the literature.

C. Preprocessing for Clutter Mitigation

The classical signal processing approach to deal with
environmental factors is to remove any clutter or un-
wanted artifacts using filtering. In this article, we applied
an approach known as the extended CLEAN (eCLEAN)
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TABLE I
Experimental Dataset Summary

*Subject different from those in LOS dataset.

Fig. 2. Preprocessing of micro-Doppler images. (a) Predefined
thresholding. (b) Proposed eCLEAN.

algorithm, which was originally designed for range-Doppler
processing [42]. eCLEAN aims at suppressing unwanted
distortions or noise effects while enhancing the natural
structural integrity of the data. Simple predefined thresh-
olding is the most commonly preprocessing method in the
micro-Doppler processing. However, due to high variance
in our data (different aspect angles, data collection environ-
ments, subjects, etc.), determining a threshold that works
for every data/class is challenging. A simple example is
provided in Fig. 2 for a walking micro-Doppler image
filtered with simple thresholding and eCLEAN algorithm.
Note that this threshold value works really well for some
of the other walking micro-Doppler images, however, for
this particular walking example it did not remove any of
the noise components, which would degrade classification
performance. On the other hand, eCLEAN removes all the
noise and artifacts without needing a predefined threshold.
It automatically determines the number of points, which
are needed to be removed using a simple and efficient
histogram-based method. eCLEAN, first, computes the 2-
D histogram of the sample spectrogram, dowmsamples it
and applies a normalization. Afterwards, it automatically
determines the threshold where the number of counts is
below 0.1. After the threshold is acquired, it slides over the
time axis and examines each time column and determines
the number of points should be extracted depending on the
threshold. It operates on time slices and creates mask func-
tions. This continues until all number of points are extracted.
An example pseudocode of the eCLEAN is provided in
Algorithm 1.

All spectrograms illustrated in Fig. 1 have had the
eCLEAN algorithm applied on the data. Thus, it is important
to note that clutter mitigation was not sufficient in removing
all artifacts in the data, and that environmental differences
remain in the two datasets despite such mitigation efforts.
This point is significant because it underscores the necessity
of developing DNN approaches that can overcome nontar-
get artifacts present in the data.

Algorithm 1: eCLEAN Algorithm.

Input: Training spectrogram datacube (X ∈ R
I1xI2xI3 ,

I1 and I2 original image sizes and I3 number of
training samples),

Output: Cleaned training spectrogram datacube (Xc ∈
R

I4xI5xI3 , I4 and I5 resized spectrogram
dimensions)
PROCESS:

1: for n = 1 to I3 do
2: Y ∈ R

I1xI2 ← X (:, :, n), matrix slice of tensor
X

3: Normalize & resize the matrix Y and compute
2D histogram

4: Find the intensity index (αn) where
distribution starts to plateau

5: for k = 1 to I2 do
6: p ∈ R

I1 ← Y(:, k), fiber of tensor X
7: Compute 1D histogram of fiber p
8: Apply αn and determine the number of

points (Ns) should be extracted from fiber p
9: for j = 1 to Ns do

10: f j = maxk (p ∈ R
I1 ), v j = arg maxk (p ∈

R
I1 )

11: Subtract a fraction of the point spread
function centered at the peak from p.

12: Record the peak amplitude and position in
the cleaned vector (pc ∈ R

I1 )
13: end for
14: Store pc’s in cleaned spectrogram image

Yc ∈ R
I1xI2

15: end for
16: Store Yc’s in cleaned spectrogram datacube Xc

17: end for

III. GENERATIVE MODELS

The term “generative” is used in many ways in the
machine learning community. Within the scope of this
article, this term refers to a model that takes a training data
with distribution pdata and seeks to learn a close estimate of
it, denoted as pmodel. More specifically, generative models
attempt to predict features given a certain label, whereas,
discriminative models try to predict a label of a given input
data [43]–[45]. Generative models can be classified into two
broad categories: explicit (VAE, PixelRNN/CNN [46], [47])
and implicit (GAN [48], Markov chain) approaches [49].

Generative models have been successfully employed in
image recognition, such as performance improvement in re-
inforcement learning, domain adaptation, presentation, and
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Fig. 3. Randomly chosen eight samples generated by WGAN for walking class.

manipulation of high-dimensional distributions and over-
coming the problems with missing data [49]. In this article,
we apply generative models in the context of human motion
classification to increase the amount of training data as well
as to broaden the intraclass motion diversity, while taking
into account environmental factors, e.g., clutter sources,
which are not included in kinematic models of human
motion. The Wasserstein GAN (WGAN) is a popular variant
of the GAN architecture, which employs the 1-Wasserstein
distance, also known as the earth-mover distance rather
than alternative metrics, such as the Kullback–Leibler (KL)
divergence or the Jenson–Shannon divergence, to quantify
the distance between the model and target distributions [50].
The WGAN is advantageous because it provides for a more
stable training process, with proven convergence of the
loss function, and is less sensitive to model architecture
or hyperparameter selection.

The results of applying a WGAN to synthesize radar
micro-Doppler signatures for walking is shown in Fig. 3. It
may be observed that many of these samples have features
that are deviant from the typical properties of walking
micro-Doppler, such as high frequency components dis-
connected from the low-frequency micro-Doppler of the
torso, negative micro-Doppler corresponding to motion in
the reverse direction, and filled in regions between the peaks
that would be inconsistent with the arm motion of a typical
walking person.

As a result, in this article, we focus on conditional
generative models, principally the CVAE and ACGAN,
which allow the generative model to condition on external
class labels. This has the benefit of improving the visual
accuracy of the synthetic images generated. An alternative
to these conditional models is to train N (number of classes)
separate models. However, this has an adverse effect of
causing the problem of overfitting due to the small amount
of available training data, and requires high computational
power. Moreover, it has been shown that forcing a model
to perform additional tasks or constraints improves the
performance of the original problem [35].

A. Conditional Variational Autoencoders

CVAEs are an extension of the vanilla VAE, where the
input observations modulate the prior on Gaussian latent
variables that generate the outputs [51]. A vanilla VAE con-
sists of an encoder, a decoder, and a loss function. The en-
coder and decoder are usually designed as neural networks,
and they are given the weights of θ and φ, respectively. The
encoder takes an input image and outputs a latent represen-
tation in lower dimensions. It is important to note that the
latent space is stochastic: the encoder outputs parameters to
a Gaussian probability density, which can, then, be sampled
to obtain noisy values of the latent representation z. Then,
the decoder takes the encoded latent representation as an
input and outputs parameters to the probability distribution
of the data. In this article, the encoder and decoder are
denoted as qθ (z|x) and pφ (x|z), respectively.

The loss function of a vanilla VAE is the negative
log-likelihood with a regularizer. It can be decomposed
into a single spectrogram image since there are no global
connections between images. The loss function li for a
single image xi is defined as

li(θ, φ) = −Ez∼qθ (z|xi )[log pφ (xi|z)]+ KL(qθ (z|xi )||p(z))
(2)

where the first and second term represent the reconstruction
error and the regularizer, respectively. The former encour-
ages the decoder network to learn how to reconstruct the
input data, while providing the smallest error, as in basic
autoencoders. If the decoder is unable to reconstruct the data
well enough, then it will incur a high loss function value. The
regularizer is the KL divergence, which measures how much
information is lost when using qθ (z|x) to represent p(z).
The regularization term forces the encoder to map images
from the same classes onto the same region in the latent
space. Moreover, in the VAE, p is specified as the normal
distribution with mean zero and variance one (N (0, 1)).

Similar to vanilla VAEs, a CVAE consists of an encoder,
a decoder, and a loss function. However, in contrast to VAEs,
CVAEs have additional input branches called conditions
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(external class labels) to both the encoder and decoder. Due
to embedding of class labels, the encoder is conditioned on
the spectrograms and corresponding class labels, whereas,
the decoder is conditioned on latent variables and class la-
bels. Other, than, conditional embeddings, CVAEs have the
same principle as VAEs, where the encoder takes the spec-
trograms and class labels (x, y) and outputs a hidden rep-
resentation z, with the attached weights (θ) and biases (φ).
Then, the decoder takes z and y as inputs and outputs the
parameters to the probability distribution of the data. The
CVAE is trained to maximize the conditional log likelihood.
In CVAEs, the empirical lower bound is defined as

Lcave(x, y; θ, φ) = −KL( qφ (z|x, y) || pθ (z|x))

+ 1

L

L
∑

l=1

log pθ (y|x, z(l ) ) (3)

where z(l ) ≈ N (0, 1), L is the number of samples, qφ (z|x, y)
is the conditional recognition distribution, and pθ (z|x) is the
generative distribution. A more detailed theoretical back-
ground and implementation considerations on VAE and
CVAE can be found in [36].

As a preprocessing step, the input spectrograms (64×
64× 1) are reshaped into flat vector representations of
4096× 1 pixel values. Then, the vectorized spectrogram
images and class labels are concatenated. In our case, the
input size of the CVAE is 4104× 1 (reshaped image size
+ number of classes). The encoder and decoder configura-
tions used in this article consist of fully-connected (dense)
layers. The encoder takes the merged data and passes it
to sequential dense layers with specified neurons and acti-
vation functions: (2048× 1) - ReLU, (1024× 1) - ReLU,
(512× 1) - ReLU, and 10× 1 - Linear. The encoder has a
total of 11 018 762 (trainable) parameters. The final layer
is responsible for the mean and standard deviation for the
variational sampling that will occur from the latent space z.
After sampling, the decoder reconstructs x̂ and consists of
four dense layers as (512× 1) - ReLU, (1024× 1) - ReLU,
(2048× 1) - ReLU, and (4096× 1) - Sigmoid. The decoder
has total of 11 022 848 (trainable) parameters. We applied
stochastic gradient descent with Adam optimizer [52], an
adaptive moment estimation method, controlled by param-
eters β1 = 0.5 and β2 = 0.999. The learning rate is deter-
mined as 0.0005 for 500 epochs and minibatch size of 16. A
total of 40 000 synthetic spectrograms are generated using
CVAE (5000 for each class).

B. Auxiliary Classifier Generative Adversarial Networks

GANs are implicit generative models that aim to learn
the data distribution from a set of training samples. Due to
their implicit structure, generative models do not need any
intractable density functions as in CVAE. The basic idea
of GANs stems from a game-theoretic approach between
two players (both neural networks): generator, and dis-
criminator. These two entities are in constant battle during
training. The generator (G), seeks to generate samples that
are intended to come from the same distribution of the

training data. The input of the generator can be sampled
from a Gaussian distribution as random noise. The generator
gets samples z from the selected distribution and maps G(z)
to the image space. The main goal of the generator is to make
the image space distribution as close as possible to the pdata.
The second network is called discriminator and denoted as
D. The role of the discriminator is to discriminate between
real and fake samples generated by the generator. It takes a
simple input x and outputs D(x), which is a probability of
the given image is being real.

Since GANs use a game-theoretic application, the ob-
jective function can be represented as a minimax function.
In essence, the discriminator tries to maximize the objective
function using gradient ascent, whereas the generator tries
to minimize the objective function using gradient descent.
Training of these networks can be done by alternating
between gradient ascent and descent. The loss function of
the adversarial networks can be shown as

min
G

max
D

Ex∼pdata log(D(x)+ Ez∼pz [log(1− D(G(z)))]).

(4)
In the objective function, the discriminator is trained to

maximize the D(x) for images with x ∼ pdata. The objective
of the generator is to produce images G(z) to fool D during
training such that D(G(z)) ∼ pdata. During training, the
generator improves its ability to synthesize more realistic
images while discriminator improves its ability to distin-
guish between real from fake images.

ACGAN is an extension of the vanilla GAN model that
enables the model to be conditioned on external labels to
improve the quality of the generated images. One method to
produce class conditional samples can be done by supplying
both generator and discriminator with class labels as in
CVAE. However, the strategy behind the ACGAN is to
instead of feeding the class information to the discriminator,
one can task the discriminator with reconstructing the label
information. This can be done by modifying the discrimi-
nator to contain an auxiliary decoder network that outputs
the class labels for the training data [35]. In this respect,
the objective function of the ACGAN has two parts: the log
likelihood of the correct source Ls, and the log likelihood
of the correct class Ly

Ls = E
[

log p(s = real|xreal)
]

+ E
[

log p(s = fake|xfake)
]

(5)

Ly = E
[

log p(Y = y|xreal)
]

+ E
[

log p(Y = y|xfake)
]

(6)

where s are the generated images. The discriminator is
trained in order to maximize the Ls + LY whereas the gen-
erator is trained to maximize LY − Ls.

The employed ACGAN architecture consists of two
different parts: generator, and discriminator. The generator
takes a vector of 100× 1 random noise (latent space) drawn
from a uniform distribution (N (0, 2)) and class labels as
inputs and outputs a spectrogram image of size 64× 64× 1.
We used a similar generator network, as in the original
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Fig. 4. Randomly chosen four samples generated by ACGAN (first four in rowwise) and CVAE (last four in rowwise). Each row represents a
different class (bending, gesture, falling, and walking).

ACGAN paper, with minor modifications for generating
radar spectrogram images. The generator consists of a fully
connected dense layer reshaped to size 4× 4× 128 and
four 2-D convolutional layers with 3× 3 kernel size. Filter
sizes for each convolutional layer are determined as 256,
128, 64, and 1. The last layer contains only one filter due
to gray-scale channel size. Batch normalization with the
momentum of 0.8 and 2-D up-sampling (kernel size 2× 2
with strides of 2) are applied to each layer (including the
dense layer) of the generator network, except for the output
layer. In addition to the batch normalization, dropout of 0.15
is also applied in every even layer considering the small
amount of real training data. Adding these regularizes into
the generator network helps combat overfitting and mode
collapsing. ReLU activation functions are applied to all
convolutional layers except the output layer, which employs
a tanh activation function. Discriminator structure consists
of seven 2-D convolutional layers with a kernel size of 3× 3.
LeakyReLU is utilized as an activation function after every
convolutional layer except for the last one (the slope of the
leak was set to 0.2). Max pooling is only included in the
first layer with a filter size of 2× 2 and strides of 2. Down-
sampling is done in every odd convolutional layer with a
stride rate of 2. Batch normalization with momentum 0.8 is
utilized in every layer except for the first one. In addition to
batch normalization, a dropout of 0.25 is applied in every
even layer. The number of filters in each convolutional layer
is determined as 64, 128, 128, 256, 256, 512, and 512. The
last layer of the discriminator uses a sigmoid for the validity
of the generated images and softmax for reconstruction of
the class labels.

The preprocessing step for the ACGAN (also for CVAE)
includes a cleaning and filtering algorithm, which is fol-
lowed by scaling of the images between (−1, 1) for tanh

activation function. Weights are initialized with a normal
distribution. An Adam optimizer is utilized with learning
rate of 0.0002, β1 = 0.5, and β2 = 0.999 for 3000 epochs
and minibatch size of 16. Some examples generated by the
proposed ACGAN are depicted in Fig. 4. A total of 40 000
synthetic spectrograms are generated using ACGAN (5000
for each class).

Note that the training of CVAE and ACGAN are done
offline with a PC equipped with GT 1080Ti. The computa-
tional cost of the CVAE is low due to the fast convergence
(around 500 epochs) of the autoencoder topology. However,
for the ACGAN, convergence takes more time due to the
minmax structure of the adversarial learning. Moreover,
the topologies of the generator and discriminator in the
ACGAN are more complex than that of the CVAE, which
results in increased computational time costs. Our experi-
mentation shows that the ACGAN converges after around
5000 epochs.

IV. KINEMATIC EVALUATION OF SYNTHETIC
SIGNATURES

Despite progress in the theoretical understanding of
generative models and increased attention in GAN research,
evaluating and comparing the performance of these models
still remain a hard task. While several measures have been
introduced, there is no consensus yet as to which measure
best captures the strengths and limitations of the models and
yield a fair model comparison [53]. Moreover, evaluation
metrics are usually problem specific. Because the underly-
ing physics of the problem is different, performance metrics
valuable in the optical domain, such as inception score or
Fréchet inception distance, do not necessarily translate to
the RF domain.
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In radar micro-Doppler classification, important chal-
lenges in the context of training include obtaining a suffi-
cient amount of real data to drive synthetic data generation
with GANs, while ensuring that the synthetic signatures
are diverse, spanning the characteristics of all expected
motion signatures, and correspond to human motion that is
physically possible. In the underlying problem, the human
skeleton constrains the possible variations of spectrograms
corresponding to a given class—a condition we should
observe to avoid erroneously training the network. Towards
this end, we consider four measures to evaluate the efficacy
of the generative networks: 1) visual inspection, 2) kine-
matic fidelity, 3) signature diversity, and 4) the dimension
of the latent space.

A. Visual Inspection

A sample of some of the spectrograms generated by
CVAE and ACGAN are shown in Fig. 4 for four classes:
bending, gesture, falling, and walking. At the outset, it may
be noticed that the CVAE-generated signatures are almost
unrealistically blurry, a feature exhibited across all classes.
The main reason for this blurriness stems from the challenge
of fitting of the data distribution into a tractable density
distribution.

1) Bending: Both ACGAN and CVAE capture the
most essential kinematic property of bending, namely, the
presence of positive and negative frequency components
within the same time limit. Moreover, ACGAN was able
to learn to place time separation between the first and
second part of the bending motion. In some generations,
the time difference between the bending down (first hump)
and standing up (second hump) is close 0.2 s, whereas in
some other generations it is up to 2 s.

2) Gesturing: For gesturing, the ACGAN generated
some variations capturing the different orientations and
velocities of the arm. CVAE again seizes the kinematic
property of the motion; however, generated images remain
blurry.

3) Falling: For falling, ACGAN underscored some
salient features about the motion articulation. Note that, all
real falling experiments in the LOS dataset were performed
towards the radar, resulting in positive Doppler frequency.
Interestingly, ACGAN learned how to mirror the spectro-
gram and generated some examples as if the subject had
performed the motion in the opposite direction. Moreover,
in some cases, ACGAN generated signatures that resemble
“progressive falling”: i.e., putting the knee first—holding
onto something then falling.

4) Walking: In walking, again the principal kinematic
properties are captured by ACGAN. The motions of the
legs and arms can be seen in the example spectrograms in
Fig. 4. In the final example for walking, ACGAN generated a
spectrogram, which has a gap over which the micro-Doppler
is nearly zero. Kinematically, this corresponds to a situation
in which the subject was walking, took two steps (as evi-
denced by the two peaks in frequency), stopped, and then
took another two steps walking forward.

Fig. 5. Rule definition process: low-pass filtered upper/lower envelope
and torso frequency extraction in the generated images (left: falling,

right: walking).

B. Kinematic Fidelity

The patterns observed in radar spectrograms directly
relate to kinematics of the motion being observed. For ex-
ample, in the case of walking, the torso response represents
the strongest return and exhibits a sinusoidal oscillation.
The periodic motion of the legs causes the highest fre-
quency oscillations around the main Doppler shift. Known
as physical features, such properties have often been used in
classification of micro-Doppler signatures. In this section,
we consider kinematic properties of synthetic walking and
falling signatures, as these are challenge cases for the AC-
GAN due to the great diversity within real training samples
as well as the greater richness of frequencies comprising
the signature.

In particular, kinematic fidelity of the synthetic sig-
natures are evaluated by imposing upon the images three
different kinematic rules.

1) Generated spectrograms should be periodic, and
thus, represent the cyclic motion of the body.

2) The maximum torso frequency should be lower than
the that of the legs.

3) If the generated spectrogram occupies the positive
frequencies, indicating that the motion is performed
towards the radar, the signature should not contain
any high negative frequency components, and vice
versa.

The first rule is only applicable to periodic motions,
whereas the other two rules can be applied to walking
and falling. Note that there is no guarantee that these
kinematic rules ensure that every generated signature is
fully compatible with the kinematic constraints of human
motion. However, they do serve to enforce the most basic
properties of the skeletal constraints on human motion, and
can eliminate unrealistic or impossible synthetic signatures.

The abovementioned three rules can be tested by ex-
tracting the upper/lower envelopes and the torso frequency,
as depicted in Fig. 5. To illustrate the process of sifting
the data with these kinematic rules, let us randomly select
25 synthetic walking spectrograms generated by ACGAN,
as shown in Fig. 6. The green labels indicate that the syn-
thetic images passed all three kinematic rules, while orange
indicates minor issues (i.e., only one or two rules failed),
and red indicates that the image fails. Inspecting the two
images from this random selection of 25 signatures, it may
be observed that one fails because it only has a faint clutter
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Fig. 6. Output of the kinematic sifting algorithm on the 25 randomly
selected walking spectrograms generated by ACGAN. Green, orange,

and red colors indicate that image passes the rule without any problems,
passes the rule with minor problems, and fails the rule.

component and essentially no target component. The other
signature that failed all rules overtly has no periodicity and
inconsistent distribution of positive and negative frequen-
cies. Furthermore, the strongest response is not consistent
with typical torso motion.

When these rules are applied to the 5000 synthetic
walking spectrograms generated by ACGAN, 15% of the
signatures failed all three of the kinematic rules. For falling,
only the second and third rules were enforced, resulting in
the failure of 10% of the signatures. These results mean that
while ACGANs are predominantly successful in simulating
human motion, there is nevertheless a significant portion of
the synthetic data, which is kinematically impossible and
could lead to a degradation in classification accuracy. In
this article, we propose implementation of a PCA-based
kinematic sifting algorithm to eliminate such undesirable
synthetic samples prior to utilizing the synthetic data for
training. This is discussed in more detail in Section V.

C. Synthetic Data Diversity

A generative model is considered unsuccessful if it only
outputs one type of image (also known as mode collapse).
This is a well-known phenomenon in GANs, where the
generator will collapse and outputs a single prototype that
maximally fools the discriminator [50]. To evaluate poten-
tial mode collapse, we utilized a quantitative similarity mea-
sure called MS-SSIM [54]. MS-SSIM attempts to discount
aspects of an image that are not important for human percep-
tion. It assumes the values range between [0, 1] where higher
values correspond to perceptually more similar images, and
smaller values indicate a better diversity. Mathematically, it
is defined

SSIM(x, y) = [lM (x, y)]αM

M
∏

j=1

[c j (x, y)]β j [s j (x, y)]γ j (7)

where αM , β j , and γ j are used to adjust relative importance
of different components. Luminance, contrast and struc-
ture comarison measures are defined as l ((x, y)), c((x, y)),
s((x, y)), respectively. M depicts the scale number that will

Fig. 7. MS-SSIM scores for randomly chosen 100 walking (left) and
falling (right) image pairs for ACGAN (top) and CVAE (bottom).

be used in the iterative filtering and downsampling. x and y
are defined as the compared images.

As a simple example, we randomly selected 100 im-
age pairs from both CVAE and ACGAN-based synthetic
spectrogram datasets of the walking and falling classes.
Some sample images from the chosen pairs can be seen
in Fig. 7. The MS-SSIM values for CVAE for walking and
falling are found to be 0.67 and 0.74, respectively. These
values indicate that CVAE has low diversity for the selected
random pairs. For the ACGAN, MS-SSIM values are found
to be 0.30 for walking, and 0.35 for falling, indicating
a much higher degree of diversity among the synthetic
signatures generated. For comparison, measured samples of
falling and walking yielded MS-SSIM values of 0.45 and
0.40, respectively. Thus, the ACGAN generated signatures
provide not only sharper images, relative to CVAE gener-
ated signatures, but also a greater degree of diversity that is
comparable to that expected based on measured data.

The results of detailed analysis of the MS-SSIM values
for ACGAN-generated synthetic data are given in Fig. 8,
which shows a box plot of the MS-SSIM values for 100
randomly selected image pairs in each class. The walking
class exhibits the most diversity, as would be expected by
the possible variations of a complex motion. Gesturing and
falling exhibit the next greatest levels of diversity. Consid-
ering that falling is a more or less uncontrolled motion,
and that gesture is highly open to participant interpretation
during enactment, these results match expectations.

The level of diversity in the synthetic dataset generated
also depends upon the amount of measured data provided to
ACGAN during generation. Fig. 8(b) depicts the variation
of MS-SSIM values for falling and walking as a function
of training data size. Juxtaposed on top of this curve is
the relation between training data size and percentage of
synthetic samples that pass the kinematic rules. Note that
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Fig. 8. Diversity measures: (a) Box plots of the intra-class diversities measured by MS-SSIM, (b) MS-SSIM diversity values and percentages of
kinematically correct images as a function of the real training samples used in the training.

when a minuscule amount of measured data is used to drive
the ACGAN, the network has a tendency to generate a large
amount of data that is highly similar (over 0.8 MS-SSIM val-
ues), and that are also kinematically meaningless—virtually
none of the synthetic signatures actually adheres to kine-
matic rules. It is only when at least 100 measured sam-
ples are supplied the ACGAN that signatures are obtained,
which predominantly meet kinematic rules and exhibit a
high degree of diversity. Further increasing the amount of
measured data supplied for training the ACGAN does not
significantly affect the data diversity, but does increase the
kinematic fidelity of the data generated. Note that when
350 measured training samples are utilized, the percentage
of data passing the kinematic rules rises to 90%—a 25%
increase of the percentage attained with just 100 measured
training samples.

In micro-Doppler literature, studies involving several
thousand measurements are typical. The proposed method,
however, requires only 350 samples to generate 40 000
synthetic samples. This represents a 10 fold decrease in data
collection requirements, while enabling increased sample
diversity and a 100-fold increase in the size of the training
dataset. As shown in Section V, DNNs trained on this
synthetic dataset outperforms DNNs trained on measured
data only.

D. Strolling in the Latent Space

Analysis of the latent manifold helps us to understand
the model details, indicates the signs of memorization, and
shows if the latent space is hierarchically collapsed [45].
Kinematic and physical changes (such as different veloci-
ties, the orientation of the target, the direction of the motion,
etc.) in the generated spectrograms while strolling through
the latent space indicate that the model has learned relevant
and interesting representations from the training data. As
an example, consider an ACGAN retrained with a generator
that has a latent size of 5× 1. After the training is complete,
a walking image is generated by randomly sampling the
latent variables from a uniform distribution and passing
it through the generator. Then, we changed the first latent

Fig. 9. Strolling on the latent space: top row and bottom rows depict the
generated images by changing the first and second latent variables to

(− 3.0, − 1.5, 0, 1.5, 3.0), respectively.

variable value between−3.0 and 3.0 with linear increments
of 1.5. Note that the other four latent variables are kept fixed
during this operation. The resulting walking spectrograms
for different latent variable values are depicted in the top
row of Fig. 9.

Examining the top row of Fig. 9, as the value of the
latent variable is increased, the Doppler bandwidth is first
reduced and then begins to flip, with an increasing peak in
the negative Doppler frequencies. Moreover, the Doppler
bandwidth does indeed vary according to the aspect angle
between the radar LOS and target direction of motion.
Thus, it may be deduced that the first latent variable models
direction of motion.

Next, we change the second latent variable and observe
the resulting changes in micro-Doppler (see second row of
Fig. 9). It is evident that this variable models stride rate.
This may be seen by counting the peaks in the signature.
While the leftmost spectrogram has six distinct peaks, with
each peak corresponding to a step, the last spectrogram on
the right has only three peaks. This indicates that stride rate
decreases as the second latent variable increases.

As can be seen from the above mentioned example, the
dimensionality of the latent space effectively relates to how
the network models the underlying representation of the
data. In general, the question of how many latent variables
should be used in GANs still remains unanswered. However,
it is known that the real distribution arises out of lower

EROL ET AL: MOTION CLASSIFICATION USING KINEMATICALLY SIFTED ACGAN-SYNTHESIZED RADAR 3207

Authorized licensed use limited to: VILLANOVA UNIVERSITY. Downloaded on February 10,2022 at 17:07:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10. ACGAN latent space analysis of falling spectrograms in terms
of diversity measurements.

dimensional latent distributions. There is also a concern if a
lower dimensional latent space is utilized, the GAN might
not have enough information to model the data, causing
the modes to collapse. A large latent space dimension,
on the other hand, makes the model so complex that the
training time becomes overly long. Moreover, the mapping
of latent variables into spectrograms becomes difficult in
high-dimensional latent space. Some earlier works have
used 100 as a de facto value [45]. Using this as a baseline,
we examine the effect of latent space dimensionality on
the MS-SSIM values of resulting synthetic spectrograms.
Five ACGAN models are trained with different latent space
dimensions: 5, 25, 50, 75, and 100. The resulting MS-SSIM
diversity metrics for each model is shown in Fig. 10 for
the falling class. It may be seen that small latent space
dimensions suffer from low diversity due to the limited
number of combinations that can be achieved, while in-
creasing the latent space dimension yields better diversity.
However, beyond 75 latent variables, the diversity starts to
plateau, indicating that increasing complexity is offering
little benefit to data diversity. Thus, in this article, we elect
to use 100 latent variables in our implementation of the
ACGAN.

E. Evaluation of Kinematic Fidelity With PCA

In this section, we propose a kinematic sifting algorithm
using generalized PCA (GPCA) [55]. Kinematic evaluation
of the synthetic spectrograms in Section VI proved that
some spectrograms are still kinematically not consistent
with true human motion. The proposed sifting algorithm
aims to eliminate some of the inconsistent images that
might degrade classification performance. GPCA is first
applied on the real training images for each class, Di, i =
1, 2, . . ., 8. The objective is to find a matrix subspace set
Ũ(1)

Di
∈ R

I1×P1 and Ũ(2)
Di
∈ R

I2×P2 that project the original ten-
sor into a low-dimensional matrix subspace YDi

m ∈ R
P1×P2

(with P1 ≤ I1 and P2 ≤ I2) defined as

YDi
m = SDi

m ×1 U(1)T

Di
×2 U(2)T

Di
(8)

Algorithm 2: Data Sifting With Generalized PCA.
Input: Real and generated spectrograms
Output: Kinematically sifted images

1: for EACH CLASS do
2: Read real spectrograms
3: Apply GPCA subspace learning method and

find the optimized subspaces, (100x100
spectrogram dimensions reduced to 2x2)

4: Find the boundaries of the reduced feature
space using the 4 dimensional convex hull
method

5: Save the convex hull parameters and
optimized subspaces.

6: end for
7: for EACH CLASS do
8: Read the genered spectograms
9: Load the optimized subspaces and convex hull

parameters
10: Apply optimized subspaces and get the

reduced feature space
11: Check if the current generated spectrogram is

within the convex hull boundaries with a
tolerance

12: If in keep else eliminate
13: end for
14: returnSifted images

where SDi
m is the real training spectrogram from class Di.

The objective function of the GPCA can be written as

(Ũ(1)
Di

, Ũ(2)
Di

) = arg max
U(1),U(2)

M
∑

m=1

∥
∥YDi

m − YD
i

∥
∥

2

F
(9)

where Y = 1
M

∑M
m=1 Ym. The core matrix for each m sam-

ples can be obtained by projecting the original images using
optimized subspaces Ũ(1)

Di
, Ũ(2)

Di
as

ỸDi
m = SDi

m ×1 Ũ(1)T

Di
×2 Ũ(2)T

Di
. (10)

Finally, the feature vector of a training sample for a spe-
cific class m can be constructed as Cm = vec(Ỹm ), ∈ R

1×D,
where D = P1 × P2 and vec(·) is the matrix columnwise
vectorization operator. We defined P1 and P2 as 2.

Upon finding the optimized subspaces and reduced
feature space for each class, the n-dimensional convex
hull method is applied to determine the feature space
boundaries of the each class. Falling and walking feature
space boundaries (with feature space dimensions set to 3)
are shown in Fig. 11. Next, the optimized subspaces on
the synthetically generated images are used to reduce
the dimensionality of the feature space. Finally, features
are checked to ensure they fall within the specific class
boundaries, as determined by real training examples.
Pseudcode of the proposed method is depicted in
Algorithm 2. By using the sifting method, we are able to
eliminate 11% of bending, 18% of falling, 8% of gesture,
33% of kneeling, 7% of reaching, 15% of sitting, 36% of
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TABLE II
Performance Comparison (Accuracy) Between TF-AlexNet, CVAE, and ACGAN, PCA-ACGAN With Tolerance 1.0

and PCA-ACGAN With Tolerance 0.5

Fig. 11. Boundaries determined by n-dimensional convex hull for
bending and falling.

standing, and 22% of walking. This elimination reduces
the generated dataset size from 40 000 to 31 133.

V. ACGAN WITH PCA-BASED KINEMATIC SIFTING

A. Experimental Results

1) Classification Accuracy: In this section, we present
classification performances of transfer learning on AlexNet
(TF-ALexNet) and VGGnet (TF-VGG16), DCNNs trained
on the synthetic spectrograms generated by CVAE (CVAE-
DCNN) and ACGAN (ACGAN-DCNN) with and without
kinematic sifting at various tolerances, as shown in Fig. 13.
Note that both AlexNet and VGG16 are pretrained on
ImageNet. After the weights of the networks are acquired,
only the last two layers are retrained using the real radar
data. Moreover, the last softmax layer was also adjusted to
the number of classes. Moreover, we tested two different tol-
erances in the proposed kinematic sifting algorithm, labeled
as PCA-ACGAN-TOL-1.0 and PCA-ACGAN-TOL-0.5.

To analyze the improvement achieved by the genera-
tive models, we collected a challenging data test set in a
completely different environment and configuration from
the real samples (mentioned in Section II), which were
used to train CVAE and ACGAN. The test performances
are presented in Table II in terms of accuracy. The aver-
age test accuracies for TF-AlexNet, TF-VGG16, CVAE-
DCNN, ACGAN-DCNN, PCA-ACGAN-DCNN-TOL-1.0,
and PCA-ACGAN-DCNN-TOL-0.5 are determined to be
76%, 84%, 73%, 82%, 87%, and 93%, respectively. In
prior studies, VGGnet is a network that has provided ac-
curacies that have surpassed that of other pretrained net-
works, such as GoogleNet, as well as convolutional autoen-
coders (CAEs) and supervised learning with handcrafted
features [56], when the amount of training data is lim-
ited [19]. Therefore, it is not surprising that VGGnet sur-
passes the performance of AlexNet, and even that attained

Fig. 12. Original TWR (first row) spectrograms and corresponding
saliency maps achieved by the ACGAN-DCNN (second row) and

DCNN (third row) for different class samples (columns left to right:
falling, walking, gesture, reaching).

by using the unsifted, initial training database generated by
ACGAN without consideration of any kinematics. The low
performance of the CVAE-DCNN is also expected since
the generated images are blurry and unrealistic, have low
diversity, and there was no fine tuning in the training.

Significantly, the performance of the DCNN increases
as the ACGAN-generated synthetic signatures are increas-
ingly sifted, identifying, and discarding those samples that
are kinematically impossible and, therefore, unrepresen-
tative of the related class label. The most sifting is done
with the smallest tolerance, and the performance of the
proposed PCA-ACGAN-DCNN-TOL-0.5 approach is dras-
tically higher than that achieved with transfer learning, or
training data that is unsifted. This result further demon-
strates the need to consider physics and kinematics in the
generation of synthetic training data for micro-Doppler
classification.

2) Confusion Matrix: The test confusion matrix of the
PCA-ACGAN-DCNN-TOL-0.5 is provided in Table III. It
is observed that the proposed scheme provides the best test
accuracy around 93%. The primary source of confusion
is between bending and kneeling, as expected. These two
motions have the same kinematic structure in the TF do-
main. Both include a positive and a negative hump adjacent
to each other, which depict the motion of the upper body in
forward direction for reaching, and the motion of the upper
body in the downwards direction for kneeling. However, one
significant difference between these activities is the motion
of the knee. In some experiments the motion of the knee
was very pronounced, resulting in increased confusion.
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Fig. 13. Flowchart of the proposed approach with PCA sifting algorithm. Note that dataset 2 was collected in a TWR setup.

TABLE III
Test Confusion Matrix for PCA-ACGAN-DCNN With Tolerance 0.5 (Test Accuracy of 93%)

There is also a high misclassification rate between
reaching and sitting. Some reaching signatures only contain
the forward or backward motion of the upper body, which
results in similar signatures as that for sitting. Next, there is
5% misclassification between falling and walking. This is
caused by the presence of progressive falls in the training
database and lower stride rates in some of the testing signa-
tures. Some testing samples include only one or two strides
meaning that subject only took 1 or 2 steps. These signatures
have similar visual representation to falling signatures due
to their low periodicity.

A high fall detection performance (90%) is achieved by
employing the proposed method. Note that, experimental
results are based on real TWR radar data obtained from
multiple aspect angles (0◦, 30◦, 45◦, 60◦, 90◦), which
demonstrates that the proposed algorithm yields the highest
overall classification accuracy among other methods.

3) Saliency Maps: The benefits of training the DCNN
with a large synthetic training dataset can also be illustrated
by examining saliency maps of the network. A saliency
map is an image that shows each pixel‘s unique importance
according to the DCNN’s classification declaration [57].
Saliency maps of four test spectrogram images are
computed for ACGAN-DCNN and DCNN (trained with
dataset 1) and are shown in Fig. 12. It may be observed
that the ACGAN-DCNN places more importance on the
perimeter of the actual signatures in the spectrograms, and

ignores the noisy parts in the images. In contrast, a basic
CNN trained on measured data focuses on some of the noisy
parts and looks for specific pixels rather than the signature
envelope. More specifically, the ACGAN-DCNN wraps all
physical components of the falling, whereas the basic CNN
puts importance on the highest frequency components.
This trivialization by the basic CNN can be problematic
with high aspect angle data. For the “reaching” class, the
ACGAN saliency map shows that the network tries to
connect two different (positive and negative) components
together, whereas those components are disjoint in the basic
CNN. In summary, the ACGAN-DCNN approach enables
correct identification of the motion components of the
spectrogram, rejecting clutter components. Saliency map
observations, thus, reinforce the importance of training on a
large dataset that has great diversity, while also maintaining
kinematic fidelity.

VI. CONCLUSION

In this article, we proposed a novel approach for gen-
erating synthetic radar micro-Doppler signatures for hu-
man motion classification. The proposed approach lever-
ages auxilliary conditional generative adversarial networks
(ACGANs) to build a diverse dataset for training deep
neural networks. However, the ACGAN-generated signa-
tures include kinematically impossible signatures, which
can degrade classification performance. To overcome this
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problem, a PCA-based kinematic sifting algorithm was pro-
posed to eliminate inconsistent samples that could corrupt
DNN training. A 19-layer DCNN trained on kinematically
sifted ACGAN-based synthetic data was shown to be ef-
fective in classifying challenging datasets collected across
different environments, as demonstrated by 93% correct
classification. In our experiment, test data were collected
through-the-wall, while LOS measurements were used to
drive the ACGAN in training data generation. This result
surpasses other previously proposed approaches, including
transfer learning and ACGAN-generated data that is not
kinematically sifted.
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