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a b s t r a c t 

In this paper, a Bayesian model is adopted for sparse signal recovery where sparsity is enforced on the 

reconstructed coefficients via probabilistic priors. In particular, we focus on a group spike-and-slab prior 

and a kernel matrix which capture both the underlying group structure and the element correlation 

within groups. A novel greedy based group adaptive matching pursuit (GAMP) algorithm is introduced, 

which integrates both prior parameter learning and intra-group correlation parameter learning into one 

single problem. The proposed approach improves the reconstruction accuracy and offers strong robust- 

ness to signal-to-noise ratio. We consider a fast implementation method of GAMP which applies the pre- 

conditioned conjugate gradient method. Simulations, MNIST dataset based experiments and multi-static 

radar imaging application are used to verify the superior performance of the proposed method over ex- 

isting techniques. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

SPARSE signal recovery and the related compressive sensing

CS) problems have attracted significant attention in recent years.

he CS techniques are able to recover signals from a small number

f measurements with a high probability if the signals are sparse

r can be sparsely represented in some known domains [1–3] . 

A typical CS model aiming to recover a sparse signal ω 

ω ω ∈ R 

n 

rom a set of fewer measurements y y y ∈ R 

m ( m � n ) is given by: 

 

 

 = A ω 

ω ω + n 

n n , (1) 

here A ∈ R 

m ×n is a known sensing matrix, and n n n ∈ R 

m is an un-

nown Gaussian noise vector. The columns of A are assumed to be

inearly independent to satisfy the unique representation property

hich ensures reliable sparse signal recovery [1] . 

In order to further enhance recoverability, recent studies have

one beyond sparse reconstruction and taken into account addi-

ional information about the underlying structure of the signal.

n practice, a wide class of signals are known to have a “group-

parsity” structure. That is, the coefficient vector ω 

ω ω has a natural
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rouping of its components, and the components within a group

re likely to be either all zeros or all nonzeros. In addition, the el-

ments within groups are often correlated [4] . With group-sparsity

tructure, ω 

ω ω can be viewed as a concatenation of K groups, i.e., 

 

 

 = 

⎡ 

⎢ ⎣ 

ω 11 , · · · , ω 1 L ︸ ︷︷ ︸ 
ω ω ω T 

1 

, · · · , ω K1 , · · · , ω KL ︸ ︷︷ ︸ 
ω ω ω T 

K 

⎤ 

⎥ ⎦ 

T , (2) 

here ω 

ω ω k is the k th group of ω 

ω ω , ω kl is the l th element in ω 

ω ω k , K

s the number of groups and L is the number of elements in each

roup. It should be pointed that the identical size assumption is

ot necessary, and the method is also applicable to different group

izes. A sparsity level p amounts to having p non-zero groups

mong K ( p � K ) groups, with unknown locations. A number of

lgorithms have been proposed to recover group-sparsity signals.

ypical algorithms include block-OMP (BOMP) [5] , group basis pur-

uit (GBP) [6] , group Lasso (GLASSO) [7] and block sparse Bayesian

earning (BSBL) [4] . In Bayesian sparse recovery, the choice of pri-

rs plays a key role in promoting sparsity and improving the recov-

ry performance. For example, BSBL [4] places a Gaussian-Gamma

istribution to model the group sparsity. In this paper, we focus

n spike-and-slab prior [8–14] , which is a well-suited sparsity pro-

oting prior and is considered the golden standard for sparse in-

erence in the Bayesian set-up [15] . In this prior, each individual

https://doi.org/10.1016/j.sigpro.2020.107560
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coefficient ω kl of ω 

ω ω is modeled as a mixture of two components, 

ω kl ∼ (1 − γkl ) δ0 + γkl P kl (ω kl ) , (3)

where δ0 is a point mass concentrated at zero (the “spike”), and P kl 

is any suitable distribution on the non-zero coefficient (e.g. a Gaus-

sian). The binary indicator variable γ kl controls the sparsity level

of the signal. When γ kl is chosen to be close to zero, ω kl tends to

remain zero, otherwise P kl will be the dominant distribution en-

couraging ω kl to take a non-zero value. Although the spike-and-

slab prior is suitable to encourage signal sparsity, it is unable to

exploit the underlying structure of the sparse signal. A number of

extended spike-and-slab priors were proposed to model the group

structure, and the spatial-temporal dependence of sparse signals

[16–20] . 

Motivated by these methods, the main contributions of our

work are as follows: (1) A novel generative model in sparse sig-

nal recovery is provided, which takes into consideration the group

structure and correlation learning within groups. A group spike-

and-slab prior is applied to capture the group structure of the

signals, whereas a kernel matrix is used to learn the correlations

within groups. (2) A greedy based group adaptive matching pur-

suit (GAMP) algorithm is proposed to deal with the non-convex

optimization problem resulting from the employed prior. This al-

gorithm integrates the prior parameter learning and correlation pa-

rameter estimation into one single problem. (3) A fast implemen-

tation method of the GAMP is proposed which exploits the precon-

ditioned conjugate gradient method. 

The remainder of the paper is organized as follows.

Section 2 describes the generative model and the optimiza-

tion problem. Section 3 presents the solution of the non-convex

optimization problem in Section 2 . Section 4 provides a fast

implementation of GAMP. The simulation and experimental results

are shown in Section 5 . 

Notations: We use lower-case (upper-case) bold characters to

denote vectors (matrices). f ( x | a, b ) is the conditional probability

distribution function (pdf) of the variable x given a and b . N (x | a, b)

denotes that random variable x follows a Gaussian distribution

with mean a and variance b , I L denotes the L × L identity ma-

trix, and I (x = 0) stands for an indicator function, which equals to

1 if and only if x = 0 , and is 0 otherwise. In addition, ( · ) T and

( · ) H respectively denote transpose and conjugate transpose, and

‖ x x x ‖ l represents the l th norm. 

2. The proposed model 

2.1. Group spike-and-slab prior 

To encourage group sparsity, a group spike-and-slab prior is im-

posed on the vector ω 

ω ω , i.e., 

 

 ω k ∼ γk N (0 , σ 2 λ−1 B 

B B k ) + (1 − γk ) I ( ω 

ω ω k = 0 

0 0 ) , (4)

where γ k is a binary indicator variable, which follows the Bernoulli

distribution. This prior implies that all the elements in the k th

group share the identical γ k , which is different from the stan-

dard spike-and-slab prior. When γ k is 1, all the elements in the

k th group are nonzero. σ 2 is the noise precision of the measure-

ments, and λ is a learned parameter related to the variance of

the estimated vector ω 

ω ω . It has been shown that, in many appli-

cations, the elements within the same group are often correlated

[11,13,21] , and sparse reconstruction can be significantly improved

if such correlation is properly exploited. Motivated by the kernel

techniques in correlation learning models [4,21] , we define matrix

 

 B k ∈ R 

L ×L as a positive definite kernel matrix to capture the corre-

lation of the vector elements within the k th groups. To avoid over-

fitting in parameter estimation, we constrain B B B = B B B ∀ k [21] . That
k 
s, all K groups share the identical kernel matrix, given by 

 

 

 = 

⎡ 

⎣ 

1 e −c ‖ d 21 ‖ 1 · · · e −c ‖ d L 1 ‖ 1 
. . . 

. . . 

e −c ‖ d L 1 ‖ 1 e −c ‖ d L 2 ‖ 1 · · · 1 

⎤ 

⎦ , 

here ‖ d i j ‖ 1 = ‖ x x x i − x x x j ‖ 1 is the absolute distance between the el-

ments x x x i and x x x j within each group, and x x x i and x x x j are, respectively,

he spatial representations of elements i and j , with i, j = 1 , · · · , L .

otice that the above kernel matrix is real and symmetric, and all

ts entries take values within [0,1]. The diagonal entries take unit

alues, whereas off-diagonal element values exponentially decrease

s a function of their respective distance from the main diagonal.

t is noted that c ≥ 0 is a key scaler parameter that leverages the

orrelation between elements within groups. When the scalar c ap-

roaches infinity, the kernel matrix reduces to the identity matrix,

mplying that all vector elements are independent. On the other

and, small values of c amount to strong correlations between the

lements. In the proposed model, the intra-group correlation will

e automatically learned by estimating the coefficient c . 

Without loss of generality, the measurements are assumed to

ollow Gaussian distributions, expressed as, 

 

 

 | ω 

ω ω , σ 2 ∼ N 

(
y y y | A ω 

ω ω , σ 2 I m 

)
, (5)

here ω 

ω ω is a vector composed of ω 

ω ω k . A latent variable based model

or sparse signal recovery is employed and the Bernoulli distribu-

ion is imposed on vector γγγ as, 

| κκκ ∼
K ∏ 

k =1 

Bernoulli (γk | κk ) , k ∈ { 1 , · · · , K} , (6)

here κκκ is a hyperparameter vector. 

.2. Optimization problem 

According to the generative model above, the posterior prob-

bility distribution of latent random variables ω 

ω ω , γγγ , c, σ 2 and λ
an be expressed by 

f ( ω 

ω ω , γγγ , c, λ, σ 2 | y y y , κκκ) ∝ f ( y y y | ω 

ω ω , σ 2 ) f ( ω 

ω ω | γγγ , c, λ, σ 2 ) f ( γγγ | κκκ) . 

 maximum a posteriori (MAP) estimation is performed [22] , and

he optimal values of ω 

ω ω 

∗, γγγ ∗, c ∗, λ∗ and σ 2 ∗ are given by : 

( ω 

ω ω 

∗, γγγ ∗, c ∗, λ∗, σ 2 ∗ ) = arg max 
ω ω ω , γγγ ,c,λ,σ 2 

{
f ( ω 

ω ω , γγγ , c, λ, σ 2 | y y y , κκκ) 
}
. (7)

he optimization problem above is equivalent to the following

inimization problem (see supplementary material in Appendix

): 

( ω 

ω ω 

∗, γγγ ∗, c ∗, λ∗, σ 2 ∗ ) = arg min 

ω ω ω , γγγ ,c,λ,σ 2 
L ( ω 

ω ω , γγγ , c, λ, σ 2 ) , (8)

here 

 ( ω 

ω ω , γγγ , c, λ, σ 2 ) = 

‖ y y y − A ω 

ω ω ‖ 

2 
2 

σ 2 
+ 

λ

σ 2 

K ∑ 

k =1 

ω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + 

K ∑ 

k =1 

ρk γk 

+ m ln σ 2 , 

here ρk = ln (( 2 πσ 2 

λ
) L | B B B | (1 −κk ) 

2 

κ2 
k 

) and ρρρ is a vector composed of

k with k = 1 , · · · , K. 

The cost function L ( ω 

ω ω , γγγ , c, λ, σ 2 ) consists of three terms,

amely, the data-fitting term, the correlation learning term and the

yperprior-based regularization term. Specifically, 

1) The first term is related to data-fitting, and it is a well-

known least-square problem. It aims to fit the recovered

sparse signal into the measurement vector of y y y . 
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2) The second term is for learning the intra-group correlation.

It can also induce group sparsity together with the third

term. 

3) The third term is a hyperprior-based regularization term,

that controls the activeness of each group in ω 

ω ω . The ex-

istence of this term results in a non-convex optimization

problem which is addressed by applying a greedy-based al-

gorithm, as discussed in Section 3 . 

It can be observed that signal recovery, sparsity prior learning,

ntra-correlation parameter learning and noise estimation are inte-

rated into one unified model. The sparsity prior and intra-group

orrelation learning can effectively reduce the solution space of

ignal, thus improving the performance of sparse signal recovery.

he recovered signal can further improve the accuracy of noise es-

imates which can be subsequently used to refine the optimization

rocedure. 

To solve the above problem, the GAMP method is proposed

here the alternative minimization scheme [23] is adopted to de-

ompose (8) into four subproblems. The first subproblem, which

ncludes signal recovery and sparsity prior learning, can be ex-

ressed as 

( ω 

ω ω 

∗, γγγ ∗) = arg min 

ω ω ω , γγγ

‖ y y y − A ω 

ω ω ‖ 

2 
2 

σ 2 
+ 

λ

σ 2 

K ∑ 

k =1 

ω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + ρρρH γγγ . (9) 

iven the updated ω 

ω ω and γγγ , the second subproblem is for estimat-

ng λ, and is written as 

∗ = arg min 

λ

λ

σ 2 

K ∑ 

k =1 

ω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + ρρρH γγγ . (10) 

he third subproblem optimizes for the noise precision σ 2 , given

he learned ω 

ω ω , γγγ and λ, and it is expressed as 

2 ∗ = arg min 

σ 2 

‖ y y y − A ω 

ω ω ‖ 

2 
2 

σ 2 
+ 

λ

σ 2 

K ∑ 

k =1 

ω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + ρρρH γγγ + m ln σ 2 . 

(11) 

he last subproblem can be expressed as 

 

∗ = arg min 

c 

λ

σ 2 

K ∑ 

k =1 

ω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + 

K ∑ 

k =1 

ρk γk . (12) 

he optimization procedure of these subproblems is provided in

ection 3 in details. 

. Group adaptive matching pursuit 

.1. Signal recovery and sparsity prior learning: Optimization for ω 

ω ω 

nd γγγ

In this subsection, we optimize ω 

ω ω and γγγ based on Eq. (9) given
2 and λ. A greedy-based algorithm which solves the first sub-

roblem by adding/removing elements into/from the group sup-

ort set of ω 

ω ω is proposed to handle this non-convex optimization

roblem. The subproblem can be rewritten as 

( ω 

ω ω 

∗, γγγ ∗) = arg min 

ω ω ω , γγγ
‖ y y y − A ω 

ω ω ‖ 

2 
2 + λ

K ∑ 

k =1 

ω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + σ 2 ρρρH γγγ . (13) 

ssuming that the group support of ω 

ω ω is given, that is, the loca-

ions of the non-zero groups are known, we define the set of non-

ero group index as s = { k : γk 	 = 0 } with k ∈ 1, ���, K . Then, the

ptimization problem Eq. (13) reduces to 

 

 

 

s = arg min 

ω ω ω s 
‖ y y y − A s ω 

ω ω 

s ‖ 

2 
2 + λ

∑ 

k ∈ s 
( ω 

ω ω 

s 
k ) 

H B 

B B 

−1 ω 

ω ω 

s 
k , (14) 
g

here ω 

ω ω 

s represents the vector containing only active groups of

 

 

 which are indexed by s . A s is a sub-matrix of A composed by

he group columns of A indexed by s . This problem is equivalent

o the well-known ridge regression problem which can be easily

olved by the conventional optimization algorithms. 

For convenience, we define 

s = σ 2 
∑ 

k ∈ s 
ρk , r r r s = y y y − A s ω 

ω ω 

s (15) 

nd 

(s ) = min 

ω ω ω s 
‖ y y y − A s ω 

ω ω 

s ‖ 

2 
2 + λ

∑ 

k ∈ s 
( ω 

ω ω 

s 
k ) 

H B 

B B 

−1 ω 

ω ω 

s 
k + θs . (16) 

he one-to-one correspondence between s and ω 

ω ω 

s implies that

olving Eq. (13) is equivalent to finding the group support set s .

his prompts us to use a greedy-based method to find the set s by

dding/removing a group index into/from s , whichever further re-

uces the cost function, and then solve problem Eq. (14) . In partic-

lar, the choice of group index and the action of adding/removing

re decided by calculating these two values at each iteration: 

 s = min 

k / ∈ s 
g(s ∪ { k } ) − g(s ) , (17) 

here U s represents the decrease in the cost function if adding one

f the unselected group indices into active set s . Similarly, 

 s = min 

j∈ s 
g(s \{ j} ) − g(s ) (18) 

s the reduction of cost function if removing one of the existing

ndices in s . When both U s and V s are not less than 0, the itera-

ion would be terminated, and it suggests the algorithm has con-

erged. Otherwise, we compare U s and V s to update s by adding

 (if U s < V s ) or removing j (if U s > V s ). However, the burden of cal-

ulating the precise U s and V s is very expensive. To address this

roblem, U s and V s , which are respectively the upper bounds of

 s and V s , will be calculated to reduce the computational cost in-

tead of direct estimates of U s and V s . According to the estimated

pper bounds U s and V s , an updated group support s is acquired

n each iteration. Given the updated s , ω 

ω ω 

s and r r r s can be estimated

rom Eqs. (14) and (15) , respectively. 

The initialization of s may significantly influence the conver-

ence of GAMP, and a beneficial initialization guidance will be

iven. The following three propositions support GAMP in initial-

zing s and calculating U s and V s , respectively. 

roposition 1. If ρk < 0, then k ∈ s opt , where s opt is the optimal

roup support set. 

roof. Assume that k 	∈ s opt , then 

(s opt ∪ { k } ) ≤ ‖ r r r s opt 
− a a a k ω 

ω ω k ‖ 

2 
2 + λ

∑ 

q ∈ s 
ω 

ω ω 

H 
q B 

B B 

−1 ω 

ω ω q 

+ σ 2 ρk + θs + λω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k 

= g(s opt ) + ( a a a k ω 

ω ω k ) 
H ( a a a k ω 

ω ω k ) − 2 r r r H s opt 
( a a a k ω 

ω ω k ) 

+ λω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + σ 2 ρk , (19) 

here a a a k is a sub-matrix which contains the k th group column of

 

 

 . Let 

p( ω 

ω ω k ) = ( a a a k ω 

ω ω k ) 
H ( a a a k ω 

ω ω k ) − 2 r r r H s opt 
a a a k ω 

ω ω k + λω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + σ 2 ρk , (20) 

here p(·) : R 

L → R . It is obvious that as all the elements of ω 

ω ω k 

pproaches to positive infinity, p( ω 

ω ω k ) will equal to positive infin-

ty. Furthermore, p( 0 0 0 ) = σ 2 ρk < 0 and p( ω 

ω ω k ) is continuous. Thus, 

here exist ̂ ω 

ω ω k whose all elements are nonzero such that σ 2 ρk <

p( ̂  ω 

ω ω k ) < 0 . Then we can obtain 

(s opt ∪ { k } ) ≤ g(s opt ) + p( ̂  ω 

ω ω k ) ≤ g(s opt ) , (21) 
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Algorithm 1 Adaptive Matching Pursuit. 

Input: A 

A A , y y y . 

1: while true do 

2: ω 

ω ω 

s = arg min 

ω ω ω s 
‖ y y y − A s ω 

ω ω 

s ‖ 2 
2 

+ λ
∑ K 

k =1 ω 

ω ω 

H 
k 

B B B −1 ω 

ω ω k 

3: Calculate: [ U s , k ] and [ V s , j] 

4: if min ( U s , V s ) > 0 then break while 

5: else if U s < V s then s = s ∪ { k } 
6: else s = s \{ j} 
7: end if 

8: Update λ by Eq. (31) 

9: Update σ by Eq. (33) 

10: Update B B B by Eq. (34) 

11: Update c : c = − ln 

m 1 
m 0 

12: end while 

Output: ω 

ω ω , γγγ , λ, c and σ
which suggests that adding k into s opt can decrease the cost func-

tion. However, it is contradict to the assumption k 	∈ s opt . This im-

plies that if ρk < 0, then k ∈ s opt . �

According to Proposition 1 we can initialize s 0 = { k : ρk < 0 } . 
Proposition 2. 

 s ≤ min 

k / ∈ s 

{
σ 2 ρk − r r r H s a a a k ( a a a H k a a a k + λB 

B B ) −1 a a a H k r r r s 
}
� U s (22)

Proof. Based on Eq. (19) , we have 

U s = min 

k / ∈ s 
g ( s ∪ { k } ) − g ( s ) 

≤ min 

k / ∈ s 
( a k ω k ) 

H 
( a k ω k ) − 2 r H s a k ω k + λω 

H 
k B 

−1 ω k + σ 2 ρk 

Define 

h ( ω 

ω ω k ) = min 

k / ∈ s 
( a a a k ω 

ω ω k ) 
H ( a a a k ω 

ω ω k ) − 2 r r r H s a a a k ω 

ω ω k + λω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k + σ 2 ρk . 

(23)

Let 

∂h ( ω 

ω ω k ) 

∂ ω 

ω ω k 

= 0 , (24)

then we have 

̂ 

 

 ω k = ( a a a H k a a a k + λB 

B B ) −1 a a a H k r r r s . (25)

We can obtain the minimum of h ( ω 

ω ω k ) as follows by substituting

Eq. (25) into h ( ω 

ω ω k ) 

min { h ( ω 

ω ω k ) } = σ 2 ρk − r r r H s a a a k ( a a a H k a a a k + λB 

B B ) −1 a a a H k r r r s . (26)

Since Eq. (26) holds for every k 	∈ s , it can be derived as 

 s ≤ min 

k / ∈ s 

{
σ 2 ρk − r r r H s a a a k ( a a a H k a a a k + λB 

B B ) −1 a a a H k r r r s 
}
. (27)

�

Proposition 3. 

 s ≤ min 

k ∈ s 
{ ( a a a k ω 

ω ω k ) 
H ( a a a k ω 

ω ω k ) + 2( a a a k ω 

ω ω k ) 
H r r r s 

−λω 

ω ω 

H 
k B 

B B 

−1 ω 

ω ω k − σ 2 ρk } � V s (28)

Proof. For any k ∈ S S S , we have 

g ( s ) = min 

ω s 
‖ r s + a k ω k − a k ω k ‖ 

2 
2 + λ

∑ 

q ∈ s \ { k } 
ω 

H 
q B 

−1 ω q 

+ λω 

H 
k B 

−1 ω k + θs \ { k } + σ 2 ρk 

= min 

ω s 
‖ r s + a k ω k ‖ 

2 
2 + λ

∑ 

q ∈ s \ { k } 
ω 

H 
q B 

−1 ω q 

+ λω 

H 
k B 

−1 ω k + θs \ { k } + ( a k ω k ) 
H 
( a k ω k ) 

−2 ( a k ω k ) 
H 
( r s + a k ω k ) + σ 2 ρk 

≥g ( s \ { k } ) + ( a k ω k ) 
H 
( a k ω k ) − 2 ( a k ω k ) 

H 
( r s + a k ω k ) 

+ λω 

H 
k B 

−1 ω k + σ 2 ρk . 

Since Eq. (29) holds for any k ∈ s , then we have 

V s = min 

k ∈ s 
g ( s \ { k } ) − g ( s ) 

≤min 

k ∈ s 

{
( a k ω k ) 

H 
( a k ω k ) + 2 ( a k ω k ) 

H r s − λω 

H 
k B 

−1 ω k − σ 2 ρk 

}
. 

(29)

�

According to these propositions above, the calculation of U s and

V s is converted to approximate their upper bounds, thus signifi-

cantly reducing the computation complexity. 
.2. Noise estimation: optimization for σ 2 and λ

Given ω 

ω ω 

s and s , the subproblem over λ is derived as 

∗ = arg min 

λ

λ

σ 2 

∑ 

q ∈ s 
ω 

ω ω 

H 
q B 

B B 

−1 ω 

ω ω q + ρρρH γγγ , (30)

hich results in the following closed-form solution 

∗ = 

Lσ 2 ∑ 

q ∈ s ω 

ω ω 

H 
q B 

B B 

−1 ω 

ω ω q 

·
K ∑ 

k =1 

γk . (31)

he subproblem over σ 2 is derived as 

2 ∗ = arg min 

σ 2 

‖ y y y −A A A s ω ω ω s ‖ 2 2 

σ 2 + 

λ
σ 2 

∑ 

q ∈S ω 

ω ω 

H 
q B 

B B 

−1 ω 

ω ω q + ρρρH γγγ + m ln σ 2 . 

(32)

olving this problem, then we have 

2 ∗ = 

‖ y y y − A 

A A s ω 

ω ω 

s ‖ 

2 
2 + λ

∑ 

q ∈ s ω 

ω ω 

H 
q B 

B B 

−1 ω 

ω ω q 

L 
K ∑ 

k =1 

γk + m 

. (33)

.3. Correlation learning: optimization for c 

Given ω 

ω ω 

s and s , the updating step of c is performed at each

teration. We empirically calculate the value of c by c � − ln 

m 1 
m 0 

[4] ,

here m 0 is the average of elements along the main diagonal of

atrix B B B , whereas m 1 represents that along the main sub-diagonal.

he learning rule of matrix B B B is obtained by setting 
∂L ( ω ω ω , γγγ ,c,λ,σ 2 ) 

∂ B B B 
=

 , which results in the following closed-form solution 

 

 

 = 

λ
∑ 

k ∈ s ω 

ω ω k ω 

ω ω 

H 
k 

σ 2 
∑ 

k ∈ s γk 

. (34)

hen parameter c can be updated using the new matrix B B B . There-

ore, the intra-group correlation will be automatically learned and

stimated. 

.4. Summary of the algorithm 

The whole optimization procedure is summarized in

lgorithm 1 . Since the update step of U s and V s guarantees

he decrease of cost function after each iteration, the algorithm

an converge within finite steps. 
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Table 1 

Comparisons of runtime. 

Method AMP GLASSO BSBL GAMP FGAMP 

Time(sec) 0.05 0.45 3.32 0.10 0.04 

MSE 7.00e −2 7.94e −4 1.58e −4 7.90e −5 8.10e −5 
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1  
. Fast implementation of GAMP 

In this section, we recall a fast implementation ideal that uses

he preconditioned conjugate gradient (PCG) to reduce the compu-

ation of the signal reconstruction process [24–26] . Then we in-

orporate it into our GAMP algorithm to acquire the fast GMAP

FGAMP). Looking back on the whole procedure of the GAMP

ethod, we observe that the most time-consuming part is to cal-

ulate ω 

ω ω 

s in Eq. (14) . The standard solution to Eq. (14) by solving

he inverse matrix has a computational complexity of O(n 3 ) , espe-

ially with a large n . To leverage the PCG, we rewrite Eq. (14) as 

 

 

 

s = arg min 

ω ω ω s 
‖ y y y − A s ω 

ω ω 

s ‖ 

2 
2 + λ

∑ 

k ∈ s 
( ω 

ω ω 

s 
k ) 

H B 

B B 

−1 ω 

ω ω 

s 
k 

= arg min 

ω ω ω s 
‖ y y y − A s ω 

ω ω 

s ‖ 

2 
2 + λ ‖ G 

G G ω 

ω ω 

s ‖ 

2 
2 

= arg min 

ω ω ω s 
‖ ȳ y y −φφφω 

ω ω 

s ‖ 

2 
2 , (35) 

here the matrix L L L is obtained by the Cholesky decomposition of

atrix B B B −1 due to its positive definitive property and the matrix G 

G G

s obtained by overlapping the matrix L L L to a block diagonal matrix

 

 

 = 

⎡ 

⎣ 

L L L 0 0 

0 

. . . 0 

0 0 L L L 

⎤ 

⎦ . (36) 

he vector s s s and matrix φφφ are obtained by 

= 

[
A 

A A s √ 

λG 

G G 

]
, ̄y y y = 

[
y y y 
0 

0 0 

]
. (37) 

he problem Eq. (35) is a least square problem which is equivalent

o solve the following linear equations: 

H φφφω 

ω ω 

s = φφφH ȳ y y . (38) 

he preconditioned conjugate gradient (PCG) method and the

holesky decomposition method are arguably the best known iter-

tive and direct algorithms for solving this linear equation system.

he Cholesky decomposition method has a complexity of O(n 2 )

nd PCG has O(η(1 + log 2 n )) , where η denotes the number of it-

rations taken by the PCG. The PCG is faster than Cholesky decom-

osition when the size n is lager than 30 [25] . In PCG, the pre-

onditioned matrix D 

D D is introduced. The idea is that matrix φφφH φφφ
tself maybe ill-conditioned, however, hopefully, by choosing some

ood preconditioned D 

D D , the condition number of D 

D D φφφH φφφ will be

uch better. We can solve D 

D D φφφH φφφω 

ω ω 

s = D 

D D φφφH ȳ y y by conjugate gradient

ethod [26] . 

. Simulations and experiments 

In this section, simulations and MNIST image experiments are

erformed to show the effectiveness of the proposed GAMP. The

ean square error (MSE) algorithm is used as performance in-

ex. Several state-of-the-art methods, including AMP [14] , GLASSO

7] and BSBL [4] are considered for performance comparison. The

yperparameters used in the experiments are: λ = 0 . 001 , σ = 0 . 1

nd κk = 0 . 48 for k ∈ {1, ���, K }. All experimental results were ob-

ained by averaging 100 trials and all experiments were conducted

n a 2.80 GHz PC using Matlab R2018a. 

.1. 1-D simulated data 

In this subsection, a Gaussian sensing matrix A 

A A ∈ R 

256 ×512 is

onsidered. The number of group K is 128 and the group size L

s 4. The number of non-zero groups is 10, and the coefficients

ithin groups are generated in the Toeplitz kernel matrix with

 = 0 . 5 . Without loss of generality, an additive noise is also con-

idered with the signal-to-noise ratio (SNR) of 20 dB. 
Fig. 1 show the reconstruction results of the sparse signal. Ow-

ng to neglecting the group structure, it is observed that the AMP

ethod has a poor reconstruction performance, shown in Fig. 1 (a),

ith MSE of 0.07. On the other hand, the GLASSO and BSBL meth-

ds have improved performances, shown in Fig. 1 (b) and (c), re-

pectively. Fig. 1 (d) and (e) show the reconstructed results based

n the proposed GAMP and FGAMP methods, respectively. It is

lear that the proposed methods accurately reconstruct the sparse

ignal with small MSE of 7 . 90 × 10 −5 in GAMP and of 8 . 10 × 10 −5 

n FGAMP. This superior performance is due the exploitation of

he group structure and the intra-group correlation learning in the

roposed methods. The runtime and corresponding MSE of the

bove methods are also provided and compared in Table 1 . It is

bserved that the greedy based methods, such as AMP, GAMP and

GAMP are slightly faster than GLASSO and BSBL methods, and the

GAMP method has the smallest runtime due to the use of the

CG. 

Phase Transition: In this simulation, the MSE versus the number

f measurements is firstly analyzed. All other parameters are the

ame as in the above simulation. The result is shown in Fig. 2 (a).

hen the number of measurements m is from 80 to 230, the MSE

enerally decreases with increased m . It is observed that the MSEs

or the proposed methods are generally lower than other methods

nd for m = 94 , the MSE decreases to −32 . 4 dB. The correspond-

ng MSE values are −25 . 48 dB, −15 . 18 dB and −12 . 28 dB for BSBL,

LASSP and AMP, respectively. Both GAMP and FGAMP methods

ave almost the same reconstruction performance, attributing to

he fact that the only difference between them lies in the solution

o the objective function in Eq. (14) . In addition, F1 Score, which is

n important and commonly used performance metric for binary

rediction tasks, and is denoted as 

1 Score = 2 

Precision · Recall 

Precision + Recall 
, 

s also used as an extra performance index for the non-zero sup-

ort evaluation of sparse signal [27] . The “Precision” is the num-

er of True Positives (TP) divided by sum of TP and the number

f False Positives (FP), and it can be thought of as a measure met-

ic of a sparse reconstruction exactness. The “Recall” is TP divided

y TP and the number of False Negatives (FN), and it can be re-

arded as a measure metric of a sparse reconstruction complete-

ess. It is clear that F1 Scores generally increase with increased

easurement numbers among all methods, as shown in Fig. 2 (b).

t is observed that the F1 Scores in both BSBL and the proposed

ethods almost approach to 1, and it means that these approaches

re capable of accurately recovering non-zero supports of sparse

ignals. However, the proposed methods has higher reconstruction

ccuracy and lower MSE than that in BSBL, shown in Fig. 2 (a). 

Reconstruction performances in group-sparsity levels: The MSE

ith respect to group-sparsity levels p � K , which is defined as

he number of non-zero groups, is shown in Fig. 3 (a). It is ob-

erved that the reconstruction performances generally decay with

ncreased sparsity level. The methods with the group structure,

uch as GLASSO, BSBL, FAMP and GAMP methods, have lower MSE

han that of the AMP method. But, the BSBL, GAMP and FGAMP

ethods have better performances compared to GLASSO, due to

he intra-correlation learning. The proposed GAMP and FGAMP

ethods have MSEs of −20 dB across the sparsity levels from 2 to

6. We use success rate, which is defined as the ratio between the
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Fig. 1. Reconstruction performance comparisons in the 1-D sparse signal. (a) AMP, (b) GLASSO, (c) BSBL, (d) GAMP, (e) FGAMP. 

 

 

 

 

 

 

 

 

t  

t  

e  

m

 

d  

p  

g  
total number of success events whose MSE < 0.01 (corresponding

to −20 dB) and the total number of trials, as an additional per-

formance index. It is found that the success rate maintains unite

value until the group-sparsity level reaches 27. The corresponding

values in the BSBL, GLASSO and AMP methods are 21, 13 and 12,

respectively. The reconstruction fails when the group-sparsity level

is beyond 38 for the proposed methods. The corresponding value

is 32 in the BSBL method, 20 in the GLASSO method, and 16 in
he AMP method, as shown in Fig. 3 (b). Furthermore, F1 Scores in

he proposed method have constant values of 1 across sparsity lev-

ls, and show the superiorities of the proposed methods over other

ethods, shown in Fig. 3 (c). 

Intra-group correlation parameter estimation: The above results

emonstrate that BSBL, FGAMP and FGAMP generally have better

erformances than GLASSO and AMP due to learning of the intra-

roup correlation. Fig. 4 shows the parameter estimation results of
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Fig. 2. MSE and F1 score versus the number of measurements. (a) MSE versus the number of measurements, (b) F1 score versus the number of measurements. 

Fig. 3. Reconstruction performance comparisons. (a) MSE versus group-sparsity levels, (b) Comparison of the reconstructed success rate, (c) F1 Score versus group-sparsity 

levels. 
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m  
orrelation c . It is noticed that the estimated values of c through

AMP and FGAMP are the closest to the true value. One possible

eason is that the proposed methods have smaller MSE, and they

re capable of more accurately modelling and learning the depen-

ency of elements within groups, compared to the BSBL method. 

Reconstruction performances in SNR: Fig. 5 (a) shows recon-

tructed MSE versus SNR. It is observed that MSE generally de-
reases with increased SNR for all methods, with the proposed

ethods showing the lowest values. The MSE in the AMP method

ppears to almost flatten for SNR > 10 dB. The reason could be

ttributed to the effect of the relatively limited number of obser-

ations in absence of group structure consideration. There exists

bout 4 dB difference between the proposed methods and other

ethods, when SNR is below 0. The difference between the BSLB
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Fig. 4. Correlation parameter estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Reconstructed images from MNIST dataset. The numbers appeared next to 

each method is the average MSE. 

Fig. 7. Geometry of a multi-static passive SAR system. 
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method and the proposed methods becomes slightly smaller when

SNR is above 10, while the difference above this SNR becomes

larger between the proposed methods and the others. Fig. 5 (b)

shows that F1 Score versus SNR. It is clear that the proposed meth-

ods generally have the highest values among all methods. When

the SNR increases up to 5 dB, the values of F1 Score in the pro-

posed methods approach to 1. However, it is at least 10 dB in the

BSBL method. 

5.2. MNIST image recovery 

Reconstructions of handwritten digital images from the MNIST

dataset [28] are also considered for performance comparison. The

dataset contains 60 0 0 0 digital images of size 28 × 28 pixels. Most

of the pixels in these images are inactive and the nonzero pixels

are grouped together. That is, if one pixel is nonzero, the pixels ad-

jacent to that pixel are typically nonzero. Therefore, these images

are naturally group sparse and can be effectively recovered by the

proposed methods. The measurements y y y are obtained by project-

ing the aligned vector ω 

ω ω ∈ R 

784 ×1 on a randomly generated Gaus-

sian matrix A 

A A ∈ R 

300 ×784 . Additive noise with SNR of 5 dB is also

considered. In this experiment, the group size is L = 4 . The recov-

ered images and their corresponding MSE are shown in Fig. 6 . It

is evident that the images recovered by the proposed methods are

closest to the original images and have MSEs of 1 . 05 × 10 −3 and

1 . 09 × 10 −3 . 
Fig. 5. Reconstruction MSE and F1 Scores versus SNR
.3. Multi-static passive radar imaging 

Passive radar systems, which utilize broadcast and navigation

ignals as sources of opportunity, have attracted significant inter-

sts in recent years due to their low cost, covertness, and availabil-

ty of rich illuminator sources. Consider a multi-static passive syn-

hetic aperture radar (SAR) system consisting of L stationary trans-

itters and a moving receiver, as depicted in Fig. 7 . The receiver,

hich is mounted on an airborne platform, has the capability of

eceiving reflected signals from the targets and direct-path signals
. (a) MSE versus SNR, (b) F1 Score versus SNR. 
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Fig. 8. Reconstruction results in the multi-static passive SAR system. (a) Normalized magnitude of the scattering coefficients of the original scene, (b) Reconstructed result 

based on GAMP, (c) Reconstructed result based on FGAMP, (d) Reconstructed result based on BSBL, (e) Reconstructed result based on GLASSO, (f) Reconstructed result based 

on BOMP. 
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rom the transmitters, and forms the synthetic aperture for high

zimuth resolution. According to [11,29] , multi-static SAR imaging

onfiguration can be equal to multiple bistatic cases. Furthermore,

he multi-static passive SAR imaging can be regarded as a typi-

al sparse reconstruction problem based on the forward model. By

tacking the echoes with respect to the observation aperture posi-

ions in the l th bistatic pair, we obtain the l th bistatic SAR imag-

ng 

 

 

 l = ���l ω 

ω ω l + εεε l , l ∈ [1 , · · · , L ] , (39) 

here y y y l is the observed data in the l th bistatic SAR, ���l is the

ensing matrix based on the SAR forward model, ω 

ω ω l is the recon-

tructed sparse scattering coefficients vector, and εεε l is the additive

oise. It should be noted that the supports of the sparse targets

re approximately identical across the L bistatic geometries, (i.e.,

he non-zero entries of ω 

ω ω l lie in the same positions across differ-

nt values of l ). 

Stacking all L bistatic observed data into a vector, and we

ave 

 

 

 = ���ω 

ω ω + εεε, (40) 

here y y y = [ y y y 1 , · · · , y y y L ] 
T , ��� = [ φ11 , · · · , φ1 L , · · · , · · · , φKL ] , and 

 

 

 = 

⎡ 

⎢ ⎣ 

ω 11 , · · · , ω 1 L ︸ ︷︷ ︸ 
ω ω ω T 

1 

, · · · , ω K1 · · ·ω KL ︸ ︷︷ ︸ 
ω ω ω T 

K 

⎤ 

⎥ ⎦ 

T . (41) 

otice that all scattering coefficients in each group should share

dentical sparse patterns, that is, all L elements from L bistatic

AR geometries within a group are nonzeros, when a target ex-

sts in the corresponding spatial location; otherwise, all the ele-

ents within the group are zeros. Further, the scattering coeffi-

ients within the group should be generally correlated, according
o the electromagnetic backscattering theory, and the correlation

f elements would be dependent on the observed aspects among

ulti-static geometries. When two transmitters are spatially close,

he corresponding scattering coefficients should be highly corre-

ated. Re-examining Eq. (1) , the multi-static passive SAR imaging

an be exactly regarded as sparse reconstruction problem, and can

e solved by the proposed GAMP method. 

Following the simulations in [29] , DVB-T signals with a carrier

requency of 850 MHz and a bandwidth of 7.8 MHz, which corre-

ponds to around 20 m range resolution, is used. The four illumi-

ators are located 10 km away from the scene center with their

espective aspect angles of −45 ◦, −15 ◦ and 15 ◦. These illuminators

mit their individual DVB-T waveforms with different frequencies.

he correlation of scattering coefficients among 3 bistatic geome-

ries is assumed 0.9 due to similar spatial bistatic aspects. 48 syn-

hetic aperture positions are acquired by uniformly dividing syn-

hetic aperture width. 

As shown in Fig. 8 (a), the sparse scene consists of 32 × 32 pix-

ls. With the consideration of the sparsity measure that most sig-

als can be recovered by the l 1 norm minimization, we choose the

otal number of sparse targets to be Q = 19 . The inter-pixel spac-

ngs are 1m in both range and azimuth. 

The performance comparisons of the proposed method with

ther state-of-the-art algorithms are as follows. Fig. 8 (b) to (f) rep-

esent the recovered images of GAMP, FGAMP, BSBL, GLASSO and

OMP, respectively. As shown in Fig. 8 (e) and (f), the GLASSO and

OMP algorithms yield very poor image qualities. The GLASSO al-

orithm is highly dependent on the hyper-parameter to determine

he sparsity level. The BOMP algorithm is suited to recover sparse

ignals when the measurement matrix has low coherence. The pro-

osed GAMP has the best performance, as shown in Fig. 8 (b), be-

ause of the employed golden standard prior - “spike-and-slab”

nd the correlation learning strategy. The MSEs are shown in
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Table 2 

Comparison of reconstruction MSE. 

Methods SNR = -5dB SNR = 0dB SNR = 5dB SNR = 10dB 

GAMP 5.92e −4 1.25e −4 3.99e −5 1.26e −5 

FGAMP 5.95e −4 1.26e −4 4.12e −5 1.33e −5 

BSBL 7.62e −4 1.99e −4 1.15e −4 9.05e −5 

GLASSO 4.20e −3 2.2e −3 2.00e −3 1.90e −3 

BOMP 1.78e −2 7.2e −3 3.10e −3 3.01e −3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

 

 

[  

 

 

Table 2 . In essence, the proposed GAMP achieves superior perfor-

mance in reconstructing super-resolution imaging in a multi-static

scenario characterized as a group sparsity model. 

6. Conclusion 

Compressive sensing techniques are capable of reconstructing

sparse signals from a small number of measurements. In addition

to the sparse property, the coefficients of real-world sparse sig-

nals often exhibit special structures, i.e., group structure. In this

paper, a novel greedy-based group adaptive matching pursuit al-

gorithm is proposed for the recovery of group sparse signals. A

generative model in the sparse signal recovery with exploiting the

group structure and correlation learning within groups is provided.

We apply a group spike-and-slab prior to capture the sparse signal

with group structure, and introduce a kernel matrix to learn and

model the correlation of elements within groups. A greedy based

group adaptive matching pursuit approach is proposed to address

the non-convex optimization problem resulting from the prior. A

fast implementation approach is also provided and examined based

on the preconditioned conjugate gradient method technique. The

proposed method significantly improves the reconstruction perfor-

mance of the sparse signals by jointly exploiting sparse reconstruc-

tion methods. 
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