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Abstract—Sparse array design can potentially achieve com-
parable performance over uniform array counterparts with
a fewer sensors. In this paper, we develop a sparse arrays
design method achieving maximum signal-to-interference plus
noise ratio (MaxSINR) for wideband source operating in a
wideband jamming environment. The problem is formulated as
quadratically constraint quadratic program (QCQP) that permits
the use of weighted mixed l1,∞-norm squared penalization of the
beamformer weight vector to achieve sparse array configurations.
We propose the principal eigenvector based technique to control
the desired group sparsity while promoting unit rank solutions
iteratively. It is shown that the optimum sparse array utilizes the
array aperture effectively and provides considerable performance
improvement over commonly used arrays. Simulation results are
presented to show the effectiveness of proposed algorithm for
array configurability under wideband signal model.

I. INTRODUCTION

Sparse array design yields multitude of benefits including
high resolution and their ability to cater higher number of
sources in the field of view (FOV). Sparse arrays can ef-
fectively reduce the computational and hardware overhead
of the system while optimizing sensor locations to achieve
optimality depending on the signal processing task at hand.
Many different metrics like minimum redundancy criteria,
extended co-arrays and side-lobe level control have been
proposed for optimal sparse array design. These performance
metrics results in array designs which are in principle blind
to the operating environment and result in efficient structured
array topologies [1]–[4]. More recently, the enabling switched
antenna and beam technologies have motivated the design
for environment adaptive sparse arrays. Maximum signal to
noise ratio (MaxSNR) and MaxSINR have been shown to
yield significantly efficient beamforming with its performance
depending largely on the positions of the sensors as well as
the locations of sources in the FOV [5]–[8].

Enhancing the signal power for the desired source operating
in an interference active environment is advantageous in
many key applications in radar signal processing and medical
imaging [9], [10]. The objective of the beamformer is to
minimize noise and interference signals at the array output
while simultaneously maintaining a desired response in the
direction of interest. Capon method is a well known linear
constraint beamforming approach that rejects the interference
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and maximizes the desired source signal power by improving
the output signal-to-interference plus noise ratio (SINR) [11].

In this paper, we examine MaxSINR sparse arrays for
frequency spread point source operating in wideband inter-
ference environment. The wideband sources are common to
many applications in array signal processing and are often
filtered by employing tapped delay line with sensor array
[12]–[14]. Sparse array design for wideband signals have
been studied in the context of frequency invariant beampattern
design. The end tapered thinned arrays in which the antenna
element spacing increases at the array periphery have been
shown to have fairly robust beampattern at high frequency
ratios [15], [16]. The problem of sparse array MaxSINR has
been recently investigated for general rank signal correlation
matrices assuming narrowband sources [17], [18].

In order to deal with wideband signal emitters, we pose
the problem as optimally selecting K antennas out of N
possible equally spaced locations. Each antenna has associated
L tapped delay line to jointly process the signal in temporal
and spatial domains. Our approach is the natural extension of
capon beamforming at the receiver and amounts to maximizing
the SINR over all possible sparse array configurations. The
antenna selection problem for maximizing SINR amounts to
maximizing the principal eigenvalue of the product of the
inverse of received data correlation matrix and the desired
source correlation matrix [19]. It is an NP hard optimization
problem. In order to realize convex relaxation and avoid
computational burden of singular value decomposition (SVD)
for each possible configuration, we pose this problem as
QCQP with weighted l1,∞-norm squared to promote group
sparsity. We adopt an iteration based approach to control the
sparsity of the optimum weight vector so that K antenna
sensors are finally selected. The weighted l1-norm convex
relaxation has been exploited for antenna selection problem for
beampattern synthesis, whereas, weighted l1,∞-norm squared
relaxation is shown to be very effective for minimizing the
required antennas in multicast transmit beamforming [6], [20],
[21]. We demonstrate the offerings of the proposed sparse
array design by comparing its performance with those of
commonly used compact ULA and sparse arrays developed
by other design methods.

The rest of the paper is organized as follows: In the next
section, we state the problem formulation for maximizing the
output SINR under broadband source signal model. Section



III deals with the optimum sparse array design by semidefinite
relaxation and propose iterative algorithm of finding optimum
K antenna sparse array design. Simulation and conclusion
follow at the end.

II. PROBLEM FORMULATION

Consider a single desired source and Q interfering source
signals impinging on a linear array with N uniformly placed
antennas. The baseband received signal x(n) ∈ CN , sampled
at the array at time instant n is given by:

x(n) = s(n) +

Q∑
k=1

ik(n) + v(n), (1)

where s(n) is the contribution from the desired signal located
at θl, ik(n) are the interfering signal vectors corresponding to
the respective directions of arrival, θk and v(n) is the spatially
uncorrelated sensor array output noise.
We assume an L tap delay line associated with each an-
tenna sensor. Therefore, we define a stacked vector X =
[xT (n),xT (n − 1), ...,xT (n − L)]T ∈ CNL containing the
array data collected over L sampling instances. The received
signal X is then combined linearly to maximize the output
SINR. The output signal y(n) of the optimum beamformer
for maximum SINR is given by [19]:

y(n) = w0
HX, (2)

where w0 is obtained by solving the following optimization
problem:

minimize
w

wHRin+nw,

s.t. wHRsw = 1.
(3)

Here, Rs = E(SSH) ∈ CNL∗NL is the desired signal
correlation matrix for S = [sT (n), sT (n−1), ..., sT (n−L)]T .
Likewise, Rin+n is the correlation matrix associated with
interference and noise stacked vectors. In the case of frequency
spread or wideband source signal, the correlation matrix is
given by [22],

Rs =

∫
B

∫
Ω

Sθ(ω)a(θ, ω)aH(θ, ω)dθdω, (4)

In the above equation, Ω and B are the spatial and spectral
support of the source signal respectively. For point sources
with no significant spatial extent, Eq. (4) becomes,

Rs =

∫
B

Sθ(ω)a(θ, ω)aH(θ, ω)dω, (5)

The space time steering vector a(θ, ω) corresponding to the
source signal can be represented as a Kronecker product:

a(θ, ω) = φφφω ⊗ aθ(w), (6)
with,

φφφω = [1 ej(πω/ωmax) . . . ej(πω/ωmax)(L−1)]T . (7)

aθ(w) = [1 ej(2π/λ)dcos(θk) . . . ej(2π/λ)d(N−1)cos(θk)]T ,

= [1 ej(πω/ωmax)cos(θk) . . . ej(πω/ωmax)(N−1)cos(θk)]T .
(8)

Here ωmax corresponds to the maximum allowable frequency
as to avoid aliasing in the temporal domain. Similarly, we set
the inter-element spacing d = λmin/2 to avoid spatial aliasing

corresponding to ωmax, where λ is the wavelength associated
with ω. The correlation matrix for broadband interferers ik is
defined according to Eq. (5) with the respective θk and Bk. The
sensor noise correlation matrix, Rn = σ2

vI assuming spatially
and temporally uncorrelated noise v(n) with variance σ2

v . The
constraint minimization problem in Eq. (3) can be written
equivalently by replacing Rin+n with R = Rs + Rin+n as
follows [19],

minimize
w

wHRw,

s.t. wHRsw = 1.
(9)

The analytical solution of the above optimization problem ex-
ists and is given by w0 = P{Rin+n

−1Rs} = P{R−1Rs}.
The operator P{.} computes the principal eigenvector of it’s
argument. The corresponding optimum output SINRo:

SINRo =
wH

0 Rsw0

wH
0 Rin+nw0

= Λmax{R−1in+nRs}. (10)

Equation (10) shows that the optimum beamformer for maxi-
mizing SINR is directly related to the desired and interference
plus noise correlation matrix.

III. OPTIMUM SPARSE ARRAY DESIGN

The problem of maximizing the principal eigenvalue of the
correlation matrices associated with K antenna selection is a
combinatorial optimization problem. To proceed, we assume
that the antenna configuration remains the same within the
observation time L, and, therefore we need to ensure that same
K antennas are selected at each sampling instance within the
coherent interval L. This is achieved by optimally selecting
K entries from the first N elements of w and the same K
entries from each subsequent block of N elements in w. There
are L such blocks. We assume that either the full array data
correlation matrix is known or has a co-array that delivers
the correlation values across all array elements [23]. Define
wk ∈ CL to be the weights corresponding to tap delay line
of kth sensor. Then, the problem formulated in (5) can be
rewritten as follows:

minimize
w∈CNL

wHRw + µ(

N∑
k=1

||wk||p),

s.t. wHRsw = 1.

(11)

Here, ||.||p denotes the p-norm of the vector. The mixed l1,p-
norm regularization is known to thrive the group sparsity in
the solution for p > 1 as is required in our case. The relaxed
problem expressed in Eq. (11) induces the group sparsity in
optimal weight vector w without placing a hard constraint
on the specific cardinality of w. The problem (11) can be
penalized instead by the weighted l1-norm function which is
a well known sparsity promoting formulation [24],

minimize
w∈CNL

wHRw + µ(

N∑
k=1

ui(k)||wk||p),

s.t. wHRsw = 1.

(12)

where, ui is the sparsity promoting weight vector at the ith
iteration. The∞-norm is choosen for the p-norm and weighted



TABLE I: Algorithm to achieve desired cardinality of optimal
weight vector w0.

Steps of proposed algorithm

Step 1 Initialize the weight matrix Ui to all ones and appropriate
small values of µ and ε.

Step 2 Run the rank relaxed SDP of Eq. (15).
Check if some entries in W̃ is exactly zero, if yes, check
the cardinality of non zero column of W̃ and go to Step 1
and increase or decrease the value of µ to enhance or
reduce the sparsity respectively until desired cardinality
is achieved. If desired cardinality is achieved go to Step 4
otherwise, in case of no-non zero values go to Step 3.

Step 3 Approximate solution matrix by the principal eigenvector
and subsequently update the weight vector Ui according
to Eq. (16) and repeat Step 2.

Step 4 After achieving the desired cardinality, run SDR for
reduced size correlation matrix corresponding to nonzero
values of W̃ and µ = 0, yielding, w0 = P{W}.

l1-norm function in (12) is replaced by the l1-norm squared
function without effecting the regularization property of the
weighted l1-norm function [6] i.e.,

minimize
w∈CNL

wHRw + µ(

N∑
k=1

ui(k)||wk||∞)2,

s.t. wHRsw = 1.

(13)

The semidefinite program (SDP) of the above problem can
then be realized by replacing W = wwH. Re-expressing the
quadratic function, wHRw = Tr(wHRw) =Tr(RwwH) =
Tr(RW), where Tr(.) is the trace of the matrix. This expres-
sion yields the following problem [6], [25], [26],

minimize
W∈CNL∗NL,W̃∈RN∗N

Tr(RW) + µTr(UiW̃),

s.t. Tr(RsW) = 1,

W̃ ≥ |Wdd| ∀d ∈ 1, 2, ...L.,

W � 0, Rank(W) = 1.

(14)

Here, Wdd ∈ CN∗N is the dth diagonal block matrix of W.
The rank constraint in Eq. (14) is non convex and, therefore,
we drop the rank constraint resulting in the following semidef-
inite relaxation (SDR):

minimize
W∈CNL∗NL,W̃∈RN∗N

Tr(RW) + µTr(UiW̃),

s.t. Tr(RsW) ≥ 1,

W̃ ≥ |Wdd| ∀d ∈ 1, 2, ...L.,

W � 0.

(15)

A. Unit rank promoting iteration

As suggested in [24], the weight matrix Ui is initialized
unweighted i.e. by all ones matrix and iteratively updated as
follows,

Ui+1
m,n =

1

|Wi
m,n|+ ε

. (16)

However, for the underlying problem, the solution matrix
W is not exactly rank one matrix at each iteration. Therefore,
the weight matrix iteratively favors solution of higher ranks.

To mitigate this problem, we approximate the solution matrix
by rank 1 matrix, Wi = P{Wi}PH{Wi}, to promote unit
rank solutions iteratively. This approach is found to be very
effective for the selection of optimum antenna sensors. The
proposed algorithm for controlling the sparsity of the optimal
weight vector w0 is summarized in TABLE. I.

IV. SIMULATIONS

In this section, we show the effectiveness of our proposed
technique for the sparse array design for wideband sources
based on MaxSINR criterion. The importance of array config-
urability for MaxSINR is further emphasized and reinforced by
comparing the optimum sparse array design with various array
configurations, under same signal model. For all our examples,
we select K = 8 sensors from N = 14 possible equally spaced
locations with inter-element spacing of λmin/2. The array data
is sampled periodically at sampling frequency of 1 Hz. For our
example, we have 6 delay line filter taps available with each
selected antenna sensor.

A frequency spread desired point source is impinging on
a linear array from DOA 650. The normalized frequency
spread of the source is from 0.4 Hz to 0.5 Hz. Four strong
wideband interferers are operating from 400, 500, 750 and
1500. All of these interferers are occupying the full frequency
band from 0 Hz to 0.5 Hz. The SNR of the desired signal
is 0 dB, and the INR of each interfering signals is set to
30 dB. Figure 1 shows the frequency dependent beampattern
for the optimum array configuration recovered through SDR.
It is evident from the beampattern that high gain is maintained
throughout the band of interest for the desired source signal
while mitigating the interferers for all possible frequencies. It
is important to note that the proposed algorithm performs very
close to the optimum array found by exhaustive search (3003
possible configurations), which has very high computational
cost attributed to expensive singular value decomposition
(SVD) for each enumeration. The maximum possible SINR
for the optimum array configuration found through exhaustive
search comes to be 10.46 dB, whereas the array configuration
found through convex relaxation is 10.11 dB which is only
around 0.3 dB down as compared to the optimum array found
through enumeration. The case of this MaxSINR arises when
the interferers are considerably alleviated jointly by the array
topology along with the optimum weight vectors. For the
relaxed SDP, we initialize small values for µ and ε (10−2

and 10−5 respectively in our case). On average, the proposed
algorithm takes six to seven iterations to converge at the
optimum locations and number of sensors; hence, offering
dramatic saving in the computational cost. It is of interest
to compare the optimum sparse array performance with the
compact ULA. The output SINR for the compact ULA with
8 antennas is 5 dB which is more than 5 dB down from
the optimum sparse array design. It is evident from Fig. 2
that this performance degradation of the compact ULA is
attributed to lesser gain for all frequencies of interest of desired
source direction while mitigating interferers over all possible
frequencies.



Fig. 1: Frequency dependent beampattern for the optimum
array recovered through enumeration.

Fig. 2: Frequency dependent beampattern for the optimum
array recovered through convex relaxation.

We also consider the case of optimizing the sparse array
design for the above mentioned scenario while ignoring the
temporal filter coefficients and only optimizing for the spatial
filter. To maintain fair comparison, the array optimized over
spatial degrees of freedom is subsequently applied to the delay
line scenario. The beampattern is shown in the Fig. 3. The
output SINR obtained is 4.62 dB that is more deteriorated
than the performance of compact ULA, and performance
degradation is evident from the beampattern. This degradation
is attributed to the disjoint design of the optimum spatial and
temporal filters. Finally, we plot the beampattern for the array
configuration which results in the worst SINR performance.
The worst case beampattern is shown in the Fig. 4, and offers
minimum gain towards the direction and frequencies of interest
while ensuring interference mitigation. The corresponding

Fig. 3: Frequency dependent beampattern for the optimum
array ignoring tap delay line.

Fig. 4: Frequency dependent beampattern for the array con-
figuration with the worst performance.

output SINR in this case is −3.86 dB which is considerably
less than that of the optimum design and other array topologies
discussed above.

Figure 5 shows various sparse array topologies for the cases
under consideration (where ”.” and ”×” represent the presence
and absence of sensor respectively). The optimum sparse array
maximizing the SINR and obtained through exhaustive search
is shown in the Fig. 5a, whereas the optimum sparse array
recovered through SDR is shown in the Fig. 5b. Both of
these arrays occupy similar aperture and have comparable
performances. The sparse array ignoring the temporal filter and
the array with the worst performance for the given scenario are
shown in the Fig. 5c and Fig. 5d, respectively. It is of interest
to point out that both these arrays utilize greater aperture than
the optimum array configuration, yet they perform so poorly.



(a)

(b)

(c)

(d)

Fig. 5: (a) Optimum 8 antenna array (enumeration) (b) Opti-
mum 8 antenna array (SDR) (c) 8 antenna array ignoring tap
delay line (d) Worst performance 8 antenna array

This underscores the importance of sparse array design under
the metric of maximizing the SINR which does not simply
lends itself to favoring large aperture arrays.

V. CONCLUSION

This paper considered optimum sparse array configuration
for maximizing the beamformer output SINR for the case
of broadband signal models. It was shown that the weighted
mixed l1,∞-norm squared group sparsity promoting penaliza-
tion with principal eigenvector based iterative sparsity control
algorithm is particularly effective in finding the optimum
sparse array design with low computational complexity. We
showed the effectiveness of our approach for the frequency
spread source operating in wideband jamming environment.
The MaxSINR optimum sparse array yielded considerable
performance improvement over compact ULA and other sparse
arrays for the underlying scenario. We solved the optimization
problem by both the proposed algorithm and enumeration and
showed strong agreement between the two methods in terms
of array performance. The proposed approach can be easily
extended to joint optimization in both spatial and temporal
domains.
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