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Abstract—Sparse arrays are popular for performance opti-
mization while keeping the hardware and computational costs
down. In this paper, we consider sparse arrays design method
for wideband source operating in a wideband jamming envi-
ronment. Maximizing the signal-to-interference plus noise ratio
(MaxSINR) is adopted as an optimization objective for wideband
beamforming. Sparse array design problem is formulated in
the DFT domain to process the source as parallel narrowband
sources. The problem is formulated as quadratically constraint
quadratic program (QCQP) alongside the weighted mixed l1−∞-
norm squared penalization of the beamformer weight vector.
The semidefinite relaxation (SDR) of QCQP promotes sparse
solutions by iteratively re-weighting beamformer based on pre-
vious iteration. It is shown that the DFT approach reduces the
computational cost considerably as compared to the delay line
approach, while efficiently utilizing the degrees of freedom to
harness the maximum output SINR offered by the given array
aperture.

I. INTRODUCTION

Sparse array design strives to optimally deploy sensors,
essentially achieving desirable beamforming characteristics,
lowering the system hardware costs and reducing the compu-
tational complexity [1]. Designing sparse arrays for wideband
signal models can potentially offer considerable savings in
hardware and data storage needed to process data jointly in the
spatial and temporal domains. Sparse array optimum configu-
ration design is primarily guided by environment-independent
design objectives, such as desirable beampattern characteristics
and enhancing source identifiability [2]–[4]. Recent devel-
opment in sparse array design has considered environment-
dependent type of objectives. This has been made possible
by the emerging fast and cost-effective antenna switching
technologies. In this case, optimum sparse array is the one
that achieves and maintains performance optimality under
various sensing conditions using a given and limited number
of sensors within the available aperture. One of key optimality
criteria is maximizing the signal-to-interference plus noise
ratio (SINR) which has been quite successful in yielding
array configurations resulting in enhanced target parameter
estimation accuracy [5]–[8].

In this paper, we consider environment-dependent MaxS-
INR sparse arrays design for wideband sources in presence
of wideband jammers. This is in contrast with environment-
independent wideband beamforming for sparse arrays which
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has been investigated for frequency independent beampattern
synthesis and sidelobe level control [9]–[11]. In essence, we
adopt a Capon based methodology which is data dependent
beamforming aiming at enhancing the desired signal power
and reducing undesired signal components at the array output
when operating in an interference active environment [12].

Wideband sources are commonly encountered in multitude
of applications in array processing [13], [14]. Wideband
beamforming is executed either as a delay line filtering or
DFT implementation [15]–[18]. In this paper, we focus on
the latter where the data at each sensor is buffered and
transformed to the frequency domain by L-point DFT. In this
case, the optimal beamformer seeks to maximize SINR in
each frequency bin individually. The underlying problem is
then cast as finding the optimum array configuration across
all frequency bins which maximizes the SINR at the array
output. To underscore sparsity in the spatial domain, we pose
the problem as optimally selecting P antennas out of N
possible equally spaced locations. Then, the optimum Capon
beamformer is the one that achieves the design objective,
considering all possible sparse array configurations that stem
from different arrangements of the available antennas.

It has been shown that for uniform linear arrays (ULAs),
Capon beamformer maximizes the principal eigenvalue of the
product of the received data correlation and desired correlation
matrix [19]. The same principle applies to the underlying prob-
lem where such maximization involves two sets of variables
pertaining to sensor placements and multiple frequencies. It
is noted, however, that principal eigenvalue maximization is
a combinatorial optimization and is, therefore, NP hard. In
order to avoid the computational burden of singular value
decomposition (SVD) for each possible array configuration,
we solve the problem by convex approximation.

The design problem at hand is posed as QCQP with
weighted mixed l1−∞-norm penalization. This formulation
promotes group sparsity to ensure that P antenna sensors are
selected in the beamforming weight vectors corresponding to
L DFT bins. We opt to use l1−∞-norm squared penalization, as
a regularization term, which naturally leads to the semidefinite
relaxation (SDR). The SDR is the convex relaxation of QCQP
and, therefore, can be solved in polynomial time. It is shown
that the solution of the underlying QCQP is subsequently given
by the principal eigenvector of the SDR solution matrix. In or-
der to promote rank one SDR solutions iteratively, and recover



sparse solutions effectively, we adopt a modified eigenvector
based scheme to update the regularization weighting matrix.
The proposed approach builds on the fact that the weighted
l1-norm convex relaxation has been exploited for antenna
selection problems for beampattern synthesis, whereas the
weighted l1−∞-norm squared relaxation has been shown to
effectively reduce the required number of antennas in multicast
transmit beamforming [20]–[22]. We demonstrate the offerings
of the proposed sparse array design approach by comparing
its performance with those sparse arrays developed by existing
design methods.

The rest of the paper is organized as follows: In the next
section, we state the problem formulation for maximizing the
output SINR under wideband source signal model by explain-
ing the DFT signal model in detail. Section III deals with the
optimum sparse array design by semidefinite relaxation to find
the optimum P antenna sparse array geometry. Simulations are
presented for the above cases, and conclusion follows at the
end.

II. PROBLEM FORMULATION

A desired source and Q interfering source signals impinging
on a linear array with N uniformly placed antennas. The
baseband signal x(n) ∈ CN having bandwidth Bs/2, is
sampled at the receiver at the Nyquist rate. The received signal
at time instant n is therefore given by:

x(n) = s(n) +

Q∑
k=1

ik(n) + v(n), (1)

where s(n) is the contribution from the desired signal located
at θs, ik(n) are the interfering signal vectors corresponding to
the respective directions of arrival, θi and v(n) is the spatially
uncorrelated sensor array output noise.
The received signal x(n) is processed in the spectral domain
by taking an L point DFT for the data received by kth sensor
xk(n),

Xk(l) =

L∑
p=1

xk(n− p)(e−j 2π
L )lp, l = 0, 1, ... L− 1. (2)

Define a vector Xl ∈ CN , containing the lth DFT bin data
corresponding to each sensor,

Xl = [X1(l), X2(l), ..., XN (l)]T . (3)

The data for the lth data bin is then combined linearly by
weight vector wl such that,

yl = wH
l Xl, l = 0, 1, ... L− 1. (4)

Subsequently, the overall beamformer output y is generated by
taking the inverse DFT of yl generated across L beamformers.
The DFT implementation seeks to maximize the output SINR

for each frequency bin, yielding the following optimization
problem,

minimize
w0,w1,...wL−1

L∑
l=1

wH
l Rlwl,

s.t.
L∑
l=1

wH
l Rslwl = 1.

(5)

The correlation matrix Rl = XlX
H
l is the received correla-

tion matrix for the lth processing bin. Similarly, the source
correlation matrix Rsl for the desired source impinging from
direction of arrival θs is given by,

Rsl = SlS
H
l = σ2

sla(θs, l)a
H(θs, l) (6)

Here, Sl is the received data vector representing the desired
source in the lth bin and DOA θs, σ

2
sl donates the power of

this source, a(θs, l) is the corresponding steering vector for
the source and is defined as follows,

a(θs, l) = [1 ejπ(
Ωmin+l∆ω

Ωmax
)cos(θs)

. . . ejπ(
Ωmin+l∆ω

Ωmax
)(N−1)cos(θs)]T .

(7)

Equation (7) models the steering vector for the lth frequency
bin, where Ωmin = wc− Bs

2 is the lower edge of the passband
frequency and ∆ω = Bs

L is the frequency resolution, wc being
the carrier frequency. Similar to the tapped delay line, the DFT
implementation can equivalently determine the the optimum
sparse array geometry for enhanced MaxSINR performance
as explained in the following section.

III. OPTIMUM SPARSE ARRAY DESIGN

The problem of maximizing the principal eigenvalue of
the correlation matrices associated with P antenna selection
is a combinatorial optimization problem. We assume the
knowledge of the full array data correlation matrix which is
realizable for fully-augmentable sparse arrays and estimated
by correlation matrix completion and interpolation schemes.
We formulate the sparse array design for MaxSINR in case of
wideband beamforming as a rank relaxed semidefinite program
(SDR).

A. Semidefinite Programming for Sparse solution

We assume that the antenna configuration remain the same
within the observation time. Therefore, it is required that the
same P antennas are selected for each DFT bin within the
coherent processing interval. We optimally pick P entries from
the beamforming weight vector for the first DFT bin and the
same P entries are to be selected for the remaining L − 1
frequencies. Define wk ∈ CL to be the weights for all the L
DFT bins corresponding to the kth sensor. Then, rewrite the
problem formulated in (5) as follows:

minimize
wl∈CN

L∑
l=1

wH
l Rlwl + µ(

N∑
k=1

||wk||q),

s.t.
L∑
l=1

wH
l Rslwl = 1.

(8)



Here, ||.||q denotes the q-norm of the vector. The mixed l1−q
norm regularization is know to thrive the group sparsity in the
solution for q > 1 as is required in our case. The relaxed
problem expressed in Eq. (8) induce the group sparsity in
optimal weight vectors wl without placing a hard constraint
on the specific cardinality of wl. The problem in (8) can be
penalized instead by the weighted l1-norm function which is
a well known sparsity promoting formulation [23],

minimize
wl∈CN

L∑
l=1

wH
l Rlwl + µ(

N∑
k=1

ui(k)||wk||q),

s.t.
L∑
l=1

wH
l Rslwl = 1.

(9)

where, ui(k) is the kth element of re-weighting vector ui at
the ith iteration. We choose the ∞-norm for the q-norm and
replace the weighted l1-norm function in (9) by the l1-norm
squared function without effecting it’s regularization property
[22],

minimize
wl∈CN

L∑
l=1

wH
l Rlwl + µ(

N∑
k=1

ui(k)||wk||∞)2,

s.t.
L∑
l=1

wH
l Rslwl = 1.

(10)

The SDR for the above problem can then be realized
by re-expressing the quadratic functions, wH

l Rlwl =
Tr(wH

l Rlwl) =Tr(Rlwlw
H
l ) = Tr(RlWl), where Tr(.) is

the trace of the matrix. This expression yields the following
problem [22], [24], [25],

minimize
Wl∈CN.N ,W̃∈R

N.N

L∑
l=1

Tr(RlWl) + µTr(UiW̃),

s.t.
L∑
l=1

Tr(RslWl) ≥ 1,

W̃ ≥ |Wl| ∀ l ∈ 0, 1, ...L− 1.,

W � 0, Rank(W) = 1.
(11)

Here ′ ≥′ is the element wise comparison and ′ �′ represents
inequality in the matrix sense, Wl ∈ CN.N is the outer product
of the lth beamforming weight vector, Wl = wlw

H
l and

Ui = ui(ui)T . The rank constraint in Eq. (11) is non convex
and, therefore, we drop the rank constraint resulting in the
following SDR:

minimize
Wl∈CN.N ,W̃∈R

N.N

L∑
l=1

Tr(RlWl) + µTr(UiW̃),

s.t.
L∑
l=1

Tr(RslWl) ≥ 1,

W̃ ≥ |Wl| ∀ l ∈ 0, 1, ...L− 1.,

W � 0.
(12)

Algorithm 1 SDR for optimal sparse beamforming vectors.

Input: Received data correlation matrix Rl’s, N , P , L, look
direction DOA θs.

Output: L beamforming weight vectors.
Initialization:
Initialize µ, ε, U is all ones matrix.
while (Sparsity is not invoked in |W̃| ) do

Run the SDR of Eq. (12).
Update the regularization weighting matrix U according
to Eq. (14).

end while
Binary search for desired cardinality P
l = µlower, u = µupper (Initializing lower and upper
limits of sparsity parameter range)
while (Cardinality of wl 6= P ) do
µ = [(l + u)/2]
Run the SDR of Eq. (12) with the last regularization
weighting matrix U from the first while loop.
if (Cardinality of wl) < P then
u = µ

else
l = µ

end if
end while
After achieving the desired cardinality, run SDR for re-
duced size correlation matrix corresponding to nonzero
values of W̃ and µ = 0, yielding, wl = P{Wl}.
return wl

It is apparent from the problem formulation that the DFT
approach involves L unknown variables of dimension N ∗N ,
whereas, the delay line filtering approach has the dimension-
ality of the order of NL ∗NL that makes the DFT approach
computationally more viable.

As suggested in [23], the weight matrix Ui is initialized
unweighted, i.e., a matrix of all ones. It is iteratively updated
as follows,

Ui+1
m,n =

1

W̃i(m,n) + ε
. (13)

The parameter ε prevents the unwanted case of division by zero
and also avoids the solution to converge to local minima. The
m,nth entry of W̃ is given by W̃i(m,n). However, for the
underlying problem, the solution matrices Wl is not exactly
rank one matrix at each iteration. Therefore, the weight matrix
iteratively favors solution of higher ranks and struggles to
yield desirable sparse solutions. To mitigate this problem, we
approximate the solution matrix by rank 1 approximation as,

Ui+1
m,n =

1

Yi(m,n) + ε
. (14)

where, Yi = yi(yi)T , for yi = 1
L

∑L
l=1(|P{Wi

l}|)2. The
operator P{.} denotes the principal eigenvector of the input
matrix. Clearly, Yi is rank one matrix. This modified reweigh-
ing approach effectively solves the optimum sparse array



Fig. 1: Frequency dependent beampattern for the optimum
array recovered through enumeration.

selection. The proposed algorithm for controlling the sparsity
of the optimal weight vector is summarized in Algorithm. 1.

(a)

(b)

(c)

(d)

Fig. 2: (a) Optimum 10 antenna array for DFT implementation
(SDR) (b) Optimum 10 antenna array for DFT implementation
(enumeration) (c) Optimum 10 antenna array for delay line
implementation (SDR) (d) Worst performance 10 antenna
array for DFT implementation

IV. SIMULATIONS

We demonstrate the effectiveness of the sparse array design
for MaxSINR by adopting the DFT beamformer approach. The
performance of the DFT beamformer for MaxSINR is further
compared with the delay line filtering to process wideband
signals optimally.

A. Example 1

We select P = 10 sensors from N = 18 possible equally
spaced locations with inter-element spacing of λmin/2. The
array data is sampled periodically at the Nyquist rate. We
consider 8 DFT bins for DFT implementation, implying L = 8
(8 filter taps associated with each selected antenna sensor
for delay line implementation). A frequency spread desired
point source is impinging on a linear array from DOA 600.
The PSD of the frequency spread source is uniform from -
0.5 Hz to 0.5 Hz. Four strong wideband interferers with the
uniform PSD are operating from 500, 700, 1200 and 1500.
The SNR of the desired signal is 0 dB, and the INR of each
interfering signals is set to 30 dB. The fractional bandwidth

Fig. 3: Frequency dependent beampattern for the worst case
sparse array topology.

of the source is such that the maximum normalized spatial
frequency is 0.5. Figure 1 shows the frequency dependent
beampattern for the optimum array configuration recovered
through SDR. The beampattern depicts the maximum gain
throughout the frequency band occupied by the source of
interest at 600, whereas, the interferers face an attenuation
of greater than 50 dB for all possible frequencies. Therefore,
the optimum sparse array configuration recovered through
SDR (array topology shown in the Fig. (2a)) delivers a
promising SINR performance of 9.85 dB. The optimum sparse
array found through exhaustive search (shown in the Fig.
(2b)) offers an output SINR of 9.88 dB that is sufficiently
close to the array yielded by the convex relaxation. It is
noted that the exhaustive search involves expensive singular
value decomposition (SVD) for 43758 possible configurations,
which has very high computational cost. Figure (2c) shows
the optimum sparse array achieved through SDR for the delay
line scheme for MaxSINR wideband beamforming. This array
configuration offers an output SINR of 9.7 dB and is lower
than the sparse array design realized for the DFT beamformer
implementation. However, the maximum possible SINR of-
ferings in the delay line implementation is 9.94 dB (found
through exhaustive search) and is greater than the maximum
SINR offered by the DFT approach. Figure (2d) depicts the
sparse array configuration with the worst case SINR of 1.7
dB. This considerable performance degradation is explained
from Fig. (3) which shows the beampattern associated with the
worst case sparse array configuration. In this case, the optimal
weights strive to alleviate the high power jammers but struggle
to place the maxima towards the source of interest, thereby
losing considerably in SINR performance. It is of interest to
observe that the worst case sparse array configuration occupies
the entire available aperture yet compromises significantly on
the performance.

We compare the performance of the DFT and delay line
implementations under different operating scenarios. To simu-
late these scenarios, we shift the DOAs of the above mentioned
case in steps of 50. For example, when the desired source is
moved from 600 to 550, the corresponding jammers locations



Fig. 4: Performance Comparisons of sparse array design for
wideband DFT beamformers vs delay line filtering implemen-
tation (DOA refers to the angle of source of interest).

are also moved 50 to the left. In this way, we generate seven
different operating environments with the source of interest
moving from 600 to 300. Figure (4) compares the performance
of DFT and delay line approach for sparse array optimization
using SDR and by enumeration. The SINR offerings for
the delay line approach are higher as compared to the DFT
implementation for all operating environments. However, the
performance difference is not significant and is associated to
the inherent approximation of the orthogonal DFT represen-
tation of the signal frequency content. The performance of
the SDR algorithm for DFT implementation is comparable
to the delay line approach while being sufficiently closer
to the performance of sparse array design achieved through
enumeration.

V. CONCLUSION

This paper considered optimum sparse array configuration
for maximizing the beamformer output SINR for the case
of wideband signal models. It was shown that the sparse
array design for the DFT based wideband beamforming can
achieve comparable performance as compared to the delay line
approach. The overall dimensionality of the DFT approach is
lower for the delay line implementation that renders significant
gains in computational complexity. It was found that the
weighted mixed l1−∞-norm squared group sparsity promoting
formulation with principal eigenvector based iterative sparsity
control algorithm is particularly effective in finding the opti-
mum sparse array design with low computational complexity.
We showed the effectiveness of our approach for the frequency
spread source operating in wideband jamming environment.
The MaxSINR optimum sparse array design recovered sparse
arrays with comparable performance to the sparse arrays found
through enumeration and showed strong agreement between
the two methods.
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