
Ambiguity Function Analysis for Dual-Function
Radar Communications Using PSK Signaling

Indu Priya Eedara∗, Aboulnasr Hassanien†, Moeness G. Amin∗, Brian D. Rigling†

∗Centre for Advanced Communications, Villanova University, Villanova, PA, 19085, USA
E-mail: {ieedara; moeness.amin}@villanova.edu

†Department of Electrical Engineering, Wright State University, Dayton, OH 45435, USA
E-mail: {nasr.hassanien; brian.rigling}@wright.edu

Abstract—There is a presumed adverse effect on radar oper-
ation brought about from embedding communication signals in
radar waveforms. Contrary to that presumption, we show in this
paper that modulation of the radar pulse can indeed benefit both
radar and communications in the dual system paradigm. This
is shown by analyzing the impact of phase-shift keying (PSK)
symbol embedding on the ambiguity function (AF) of a multiple-
input multiple-output (MIMO) radar. Our analysis shows that
the embedded PSK symbols yield reduction in the AF sidelobe
peaks for a single pulse as well as for a series of radar pulses.
To prove these results, we analyze the AF with and without the
PSK symbol embedding. It is shown that the embedding of PSK
symbols enable increasing the number of orthogonal transmit
waveforms that can be used without increasing the sidelobe levels
(SLL) of the corresponding AF.

I. INTRODUCTION

The increasing demands of the commercial wireless commu-
nications industry have created radio frequency (RF) spectrum
congestion challenges, stirring much activities and strong
interest in spectrum sharing [1]–[3]. Spectrum sharing research
has been divided into two categories [4]: 1) the radar and
communication systems coexist as separate systems that, in
some way, respond/adapt to one another and 2) the two
systems represent facets of the same multi-function RF sys-
tem. The former is an interference mitigation problem that
could employ dynamic spectral sensing and access, possibly
combined with adaptive cancellation. The latter is considered
a co-design approach, where the radar and communication
systems use the same bandwidth. The underlying concept of
the co-design provides uncontested shared bandwidth between
wireless communication and radar systems.

In the co-design problem considered, the radar and the
communication systems share the same resources, including
bandwidth and without multiplexing [5]–[9]. As such, the
same system is tasked with dual functionalities. When com-
munications is treated as the secondary function to the primary
radar function, the system is referred to as Dual-Function
Radar-Communication (DFRC) [10]–[14]. Embedding of
information into radar waveforms can be performed using
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different strategies [12], most notably those based on multiple-
input multiple-output (MIMO) radar configurations.
In this paper, we show that using certain radar waveforms
and configurations, communication embedding benefits dual
system functionalities. We adopt the signaling scheme em-
ployed in [15] where information embedding is performed
using frequency-hopping (FH) waveforms in MIMO radar. We
examine the impact of embedding Phase Shift Keying (PSK)
communication symbols on the MIMO radar functionality. The
ambiguity function (AF) of FH-based MIMO radar typically
exhibits large sidelobes due to the re-use of the FH coefficients
within the same pulse. This limits the number of orthogonal
FH waveforms that can be synthesized. It is shown that PSK
communication symbol embedding in FH-based MIMO radar
functionality reduces the sidelobe level (SLL) of the AF. As
a result, a large number of orthogonal FH waveforms can be
synthesized via increasing the rate of FH coefficient recur-
rence while reducing the AF SLL. Therefore, the achievable
communication data rate can be increased without altering or
compromising the MIMO radar functionality.

The paper is organized as follows. Signal models are given
in Sec. II. PSK symbol embedding is presented in Sec. III.
The AF is derived and analyzed in Sec. IV. Simulation results
are given in Sec. V, and Conclusions are drawn in Sec. VI.

II. MIMO RADAR SIGNAL MODEL

Consider a DFRC system equipped with a co-located trans-
mit array of Mt isotropic antennas arranged in a linear
shape. The DFRC transmit platform performs the radar and
communication functions simultaneously by transmitting Mt

orthogonal waveforms while embedding information into the
radar emission. The MIMO radar receive array comprises Mr

co-located antennas arranged in an arbitrary linear shape. We
assume that both the transmit and receive arrays closely spaced
such that a target in the far-field appears in the same spatial
direction with respect to both arrays. Let φm(t), m = 1 . . .Mt,
be Mt waveforms which satisfy the orthogonality condition∫
Tp

φm(t)φ∗m′(t+ τ)ej2πνtdt =

{
δ(τ)δ(ν), m = m′,
0, otherwise

(1)



where t is the fast-time index, Tp is the pulse duration, (·)∗
denotes the conjugate of a complex number, τ and ν denote
time delay and Doppler shift, respectively, and δ(·) is the
Kronecker delta function. It is worth noting that, in practice,
it is difficult to synthesize waveforms which satisfy the ideal
orthogonality condition (1). However, practical waveforms can
be efficiently synthesized (see [16]; and references therein).

A. Orthogonal Frequency-Hopping Waveforms

From a MIMO radar perspective, practical waveforms
should enable achieving high transmit power efficiency and
high radar and Doppler resolution properties. In this respect,
the use of orthogonal FH waveforms for MIMO radar has
been reported in a number of papers [17]–[19]. FH waveforms
are inherently power efficient due to the constant-modulus
property. In addition, they are simple to generate and immune
to interference. The mth FH waveform can be expressed as

φm(t) =

Q∑
q=1

ej2πcm,q∆f tu(t− q∆t) (2)

where cm,q, m = 1, . . . ,Mt, q = 1, . . . , Q denote the FH
coefficients, Q is the FH code length, ∆f and ∆t are the
frequency step and the sub-pulse duration respectively, and

u(t) ,

{
1, 0 < t < ∆t,
0, otherwise.

(3)

is a rectangular pulse of duration ∆t. Equation (2) implies
that each FH waveform contains Q sub-pulses, i.e., the pulse
duration Tp = Q∆t. It is also assumed that ∆t∆f is an integer.

Let B be the bandwidth assigned to the DFRC system. To
insure that the spectral contents of the orthogonal FH wave-
forms are confined to the available bandwidth, the FH code
should be selected from the set of integers {0, 1, . . . ,K − 1}.
Then, the effective bandwidth of the pulse can be approxi-
mated as

Beff ≈ (K − 1)∆f +
1

∆t
. (4)

We assume that the value of K is properly selected such
that the condition Beff ≤ B is satisfied. The time-bandwidth
product of the DFRC system is given as

BTp =

(
(K − 1)∆f +

1

∆t

)
Q∆t = KQ. (5)

B. MIMO Radar Receive Signal Model

Assuming that the signals reflected by L targets impinge on
the MIMO radar receiver from directions θ`, ` = 1, . . . , L. We
consider the signal model given in [20] to express the Mr× 1
complex-valued vector of the received baseband signals, that
is

x (t, n) =

L∑
`=1

β` (n)
[
aT (θ`)φ(t)

]
b (θ`) + z (t, n) , (6)

where n denotes the slow-time index, i.e., pulse number, β`(n)
is the reflection coefficient associated with the `th target during
the nth pulse, θ` is the spatial angle of the `th target, a (θ`)

and b(θ`) are the steering vectors of the transmit and receive
arrays towards the direction θ`, respectively, (·)T stands for
the transpose, φ(t) , [φ1(t), . . . , φMt(t)]

T is the Mt × 1
complex vector of orthogonal waveforms, and z (t, n) is an
Mr × 1 vector of zero-mean white Gaussian noise. In (6), the
reflection coefficients β` (n) , ` = 1, . . . , L, are assumed to
obey the Swerling II target model. Matched filtering (6) to
the transmitted orthogonal waveforms yields the MtMr × 1
extended vector of virtual data, that is

y(n) = vec

(∫
Tp

x (t, n)φH (t) dt

)

=

L∑
`=1

β`(n) [a (θ`)⊗ b (θ`)] + z̃(n), (7)

where vec (·) denotes the vectorization operator that stacks
the columns of a matrix into one long column vector, ⊗
denotes the Kronecker product, (·)H stands for the Hermitian
transpose, z̃(n) is MtMr × 1 vector of additive noise at the
output of the matched-filters with zero-mean and co-variance
σ2
zIMtMr

, and IM is the identity matrix of size M ×M .

III. PSK SYMBOL EMBEDDING

This section provides a concise overview of PSK symbol
embedding into the emission of MIMO radar using FH wave-
forms. For more information on this PSK signaling scheme,
the reader is referred to [15].
Let {Ω(n)

m,q ∈ DPSK, m = 1, . . . ,Mt, q = 1, . . . , Q be
a set of PSK symbols that need to be embedded into the
MIMO radar emission during the nth pulse, where DPSK ={

0, 2π
J , . . . ,

(J−1)2π
J

}
is a PSK dictionary and J is the dic-

tionary size. Each PSK symbol represents Nbit = log2 J bits.
Then, the PSK-modulated FH waveforms are defined as

ψm(t, n) =

Q∑
q=1

e
jΩ

(n)

(m,q)hm,q(t)u(t− q∆t− nT0), (8)

where hm,q(t) , ej2πcm,q∆f t is the FH signal associated with
the mth antenna during the nth sub-pulse and T0 is the pulse
repetition interval.
Consider a single-antenna communication receiver located at
in the spatial direction θc with respect to the MIMO radar.
Then, the signal at the output of the communication receiver
can be expressed as

r(t, n) = αcha
T (θc)ψ(t, n) + w(t, n), (9)

where αch is the channel coefficient which summarizes the
propagation environment between the MIMO radar trans-
mit array and the communication receiver, ψ(t, n) ,
[ψ1(t, n), . . . , ψMt

(t, n)]T is the vector of PSK modulated
waveforms, and w(t, n) represents the additive white Gaussian
noise with zero mean and variance σ2

w.
Assume that time and phase synchronization between the



MIMO radar and the communication receiver is achieved.
Then, matched filtering r(t, n) to the FH sub-pulses yields

ym,q(n) =

∫
∆t

r(t, n)h∗m,q(t)u(t− q∆t − nT0)dt

= αche
j
(

Ω
(n)

(m,q)
−2πdm sin θc

)
+ wm,q(n), (10)

where a[m] , e−j2πdm sin θc stands for the mth entry of a(θc),
dm is the displacement between the first and the mth elements
of the transmit array measured in wavelength, and wm,q(n) ,∫∆t

0
w(t, n)h∗m,q(t)u(t−∆t−nT0)dt is the additive noise term

at the output of the (m, q)th matched filter with zero mean
and variance σ2

w. Then, the embedded PSK symbols can be
estimated as

Ω̂(n)
m,q = ∠

(
ym,q(n)

)
− ϕch + 2πdm sin θc, (11)

where ∠(·) stands for the angle of a complex number and
ϕch , ∠(αch) is the phase of the channel coefficient.

IV. AMBIGUITY FUNCTION ANALYSIS

This section provides analysis of the AF of PSK-based
information embedding into the FH MIMO radar waveforms.
We consider the case of a single pulse as well as the case of
a pulse train. It is shown that the embedding of PSK symbols
enables reducing the SLL of the AF as compared to the case
of MIMO radar without symbol embedding.

The selection of the FH code matrix to optimize the radar
operation has been recently reported in [19]. However, for
DFRC system using FH waveforms, an additional constraint
on the orthogonality between the FH waveforms from sub-
pulse to another is mandated by the communication function
of the system. Specifically, the condition

cm,q 6= cm′,q, ∀q,m 6= m′ (12)

should be satisfied while selecting the FH code to enable sym-
bol detection at the communication receiver. In this respect,
we generate the FH code for each sub-pulse using an iterative
random frequency generation until condition (12) is satisfied.

A. Ambiguity Function for a Single Radar Pulse

Without loss of generality, we consider the case of a
DFRC system with uniform linear arrays. The inter-element
spacings associated with the transmit and receive arrays are
denoted as dT and dR, respectively. The spatial frequency
of a hypothetical target located in direction θ is defined
as f = 2πdRsin(θ/λ), where λ is the carrier wavelength.
Adopting the AF definition of the MIMO radar from [17], the
AF expression for the MIMO radar can be written as∣∣∣χ(τ, ν, f, f ′)

∣∣∣,∣∣∣∣∣
Mt∑
m=1

Mt∑
m′=1

χm,m′(τ, ν)ej2π(fm−f ′m′)γ

∣∣∣∣∣ , (13)

where, τ, ν, f, f ′ denote time delay, Doppler shift, spatial fre-
quency, and spatial frequency shift, respectively, γ , dT /dR,
and

χm,m′,q,q′(τ, ν) ,
∫ Tp

0

φm(t)φ∗m′(t+ τ)ej2πνtdt (14)

is the cross-ambiguity function. The AF for MIMO radar using
FH waveforms is given by

∣∣∣χradar(τ, ν, f, f
′)
∣∣∣ =

∣∣∣ Mt∑
m=1

Mt∑
m′=1

Q∑
q=1

Q∑
q′=1

χ
(∆t)
m,m′,q,q′(τ, ν)ej2π(fm−f ′m′)γ

∣∣∣, (15)

where the cross AF of two sub-pulses is defined as

χ
(∆t)
m,m′,q,q′(τ, ν) = χrect(τ1, ν1)ej2πcm′,q′∆fτ , (16)

χrect(τ1, ν1) ,
∫ ∆t

0

u(t)u(t+ τ)e(j2πνt)dt, |τ | ≤ ∆t

=
∆t − |τ |

∆t
sinc

(
ν(∆t − |τ |)

)
.ejπν(∆t−|τ |). (17)

In (16), ν1 , (cm,q − cm′,q′)∆f + ν and τ1 , (τ − (q′∆t −
q∆t)) are auxiliary Doppler-shift and time-delay, respectively.

For the DFRC system, the AF expression with PSK symbol
embedding is given as

|χ
DFRC

(τ, ν, f, f ′)| =
∣∣∣ Mt∑
m=1

Mt∑
m′=1

Q∑
q=1

Q∑
q′=1

χ
(∆t)
m,m′,q,q′(τ, ν)

ej(Ω(m,q)−Ω(m′,q′)).ej2π(fm−f ′m′)γ
∣∣∣. (18)

By using the guidelines provided in [21] and the triangle
inequality, bounds on the maximum SLL for the DFRC system
design is given by the following condition

|χ
DFRC

(τ, ν, f, f ′)|max ≤
Mt∑
m=1

Mt∑
m′=1

Q∑
q=1

Q∑
q′=1

∣∣∣ejΩ(m,q)

e−jΩ(m′,q′)

∣∣∣ · ∣∣∣χ(∆t)
m,m′,q,q′(τ, ν).ej2π(fm−f ′m′)γ

∣∣∣, (19)

where | · |max denotes the maximum value of the magnitude
of the argument. Using the fact that

∣∣ej(Ω(m,q)−Ω(m′,q′))
∣∣ = 1

and making use of (15) and (19), it is straightforward to show
that,

|χDFRC(τ, ν, f, f ′)|max ≤ |χradar(τ, ν, f, f
′)|max. (20)

Equation (20) shows that the highest SLL of the DFRC AF is
less than or equal to the highest SLL of the MIMO radar AF.
In this respect, few comments are in order.
Remark 1: The number of FH’s within a single radar pulse is
MtQ. Assuming that each FH coefficient is used with equal
probability, the rate of occurrence of each coefficient within
the same pulse is MtQ/K. In addition, the maximum number
of FH waveforms that can be utilized without violating the
orthogonality condition (12) is Mt = K. In this case, the
number of FH sub-pulses within one radar pulse is KQ which
means that, on average, each of the K FH coefficients occurs
Q times within the same pulse.
Remark 2: The MIMO radar AF (15) exhibits spike-like SLL
at the delay instances (assuming zero Doppler shift) given
by |τ | = i∆t, i = 1, . . . , Q − 1. This can be attributed



to the fact that, at these delay instances, every pair of sub-
pulses that are shifted from one another by time separation
(q−q′)∆t = i∆t, q, q

′ = 1, . . . , Q becomes fully overlapping.
In addition, the cross AF of each pair of fully overlapped sub-
pulses, e.g., (16), has a maximum value of the peak of the
sinc function in (17). Therefore, increasing the re-occurrence
of the FH coefficients within the same pulse results in higher
SLLs of the MIMO radar AF.
Remark 3: The SLLs of the AF of the DFRC system
given in (18) depends on the the embedded PSK symbols
Ω(m,q), Ω(m′,q′). Since the PSK symbols are inherently ran-
dom, the summation in (18) results in reduced SLLs at delays
|τ | = i∆t, i = 1, . . . , Q − 1 (assuming zero Doppler shift).
Theoretically, considering that each PSK symbol represents a
random variable and taking the ensemble of (18) yields zero
SLL at delays |τ | = i∆t, i = 1, . . . , Q − 1. This implies
that performing the summation in (18) over a sufficiently large
number of sub-pulses results in nearly zero SLLs of the DFRC
AF at delays |τ | = i∆t, i = 1, . . . , Q − 1. To demonstrate
this property, we analyze the MIMO radar and DFRC AFs for
a train of pulses in the next subsection.

B. Ambiguity Function for a Train of Pulses

Here, we discuss the AF for a series of pulses of the
presented DFRC system.
The pulse train of FH pulses can be represented as

φm,n(t) =

Np−1∑
n=0

Q∑
q=1

hm,q(t)u(t− q∆t − nT0), (21)

where, Np is the number of pulses and n = 0, . . . , Np − 1.
The equation of the FH waveforms after embedding informa-
tion symbols into nth pulse is given by

ψm(t, n) =

Np−1∑
n=0

Q∑
q=1

e
jΩ

(n)

(m,q)hm,q(t)u(t− q∆t−nT0), (22)

The AF for MIMO radar using FH waveforms for Np pulses
is given by

|χ(PT)
radar(τ, ν, f, f

′)| =
∣∣∣∣Np−1∑
n=0

Np−1∑
n′=0

Mt∑
m=1

Mt∑
m′=1

Q∑
q=1

Q∑
q′=1

χ
(∆t)
m,m′,q,q′(τ − (n′ − n)T0, ν)ej2πνnT0

∣∣∣∣. (23)

To analyze the dual-function embedded communication
radar waveform of Np pulses, we compute the AF of the
designed waveform (22) as

|χ(PT)
DFRC

(τ, ν, f, f ′)| =
∣∣∣∣Np−1∑
n=0

Np−1∑
n′=0

Mt∑
m=1

Mt∑
m′=1

Q∑
q=1

Q∑
q′=1

e
j(Ω

(n)

(m,q)
−Ω

(n′)
(m′,q′))χ

(∆t)
m,m′,q,q′(τ − (n′ − n)T0, ν)

ej2πνnT0

∣∣∣∣. (24)
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Fig. 1: Zero Doppler for single pulsed MIMO radar with and
without PSK symbols embedded in FH waveforms

Equation (24) shows that, if the number of pulses in the
summation of AF is large enough, the SLLs will be reduced
and the AF will be close to the thumbtack shape.

V. SIMULATION RESULTS

In this section, we present simulation results for the radar
waveforms with one pulse and series of pulses with and
without the communication symbols embedded into the FH
waveforms.

We consider a MIMO radar system operating at X-band with
carrier frequency fc = 8.2 GHz and bandwidth 100 MHz.
The sampling frequency is taken as the Nyquist rate, i.e.,
fs = 2 × 108 sample/sec. The PRI is T0 = 10µs, i.e., the
PRF is 100 KHz. The transmit array is considered to be a
ULA comprising Mt = 10 omni-directional transmit antennas
spaced half a wavelength apart. We generate a set of 16 FH
waveforms. The parameter K = 16 is chosen such that the
FH step is ∆f = 6 MHz. The FH code length Q = 15 is
assumed, and the FH interval duration ∆t = 0.167µs is used.
The 10 × 15 FH code is generated randomly from the set
{1, 2, . . . ,K}, where K = 16 is used.We used QPSK signal
embedding to study the effect of PSK symbols on the AF.
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Fig. 2: Zero Delay and Doppler cuts for MIMO radar with 10
pulses using FH waveforms
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Fig. 3: Zero Delay and Doppler cuts for MIMO radar with 10
pulses with QPSK embedding into FH waveforms.

From Fig. 1, we can observe that the auto-correlation
function (ACF) of the MIMO FH waveforms with and without
embedding PSK symbols does not exceed the value of the
maximum value defined by condition (20). Further, it is
evident that the PSK information embedding considerably
reduces the SLLs of the AF.
Fig. 2 and Fig. 3, we present the simulation results for the
case of a series of MIMO radar pulses with and without
information embedding. Again, we observe from these figures
that embedding QPSK symbols into each hop of the radar
pulses significantly reduces the sidelobe peaks of the AF.

(a) 3D plot of MIMO AF using
FH waveforms

(b) 3D plot of AF with QPSK
embedding

Fig. 4: 3D plots of AF with and without communication
symbols embedded into FH MIMO radar waveforms

The 3D plots of the AF in Fig. 4a and Fig. 4b clearly
show the reduction in the sidelobe peaks along both delay
and Doppler with and without PSK symbol embedding.

VI. CONCLUSION

In this paper, a dual-functionality system for co-design of
radar and communication operation was considered. For each
transmit antenna, a PSK communication symbol is embedded
during each FH interval. The dependency of the ambiguity
function on the embedded PSK communication symbols for
both cases of a single pulse and a series of pulses was
analyzed. Most importantly, it was shown that the associated
maximum sidelobe levels can never exceed the maximum level
represented by the conventional MIMO radar system using

FH waveforms. In essence, embedding the PSK symbols into
the MIMO radar pulses using FH waveforms reduces the
sidelobe levels of the ambiguity function of the underlying
DFRC system. The same system can achieve a data rate
(R = B · Mt · Q · PRF. log2(J)) in the range of several
hundreds of Mbps.
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