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ABSTRACT

We present a dual-function radar communication (DFRC) system in which phase modulated information sym-
bols are embedded in the multiple-input multiple-output (MIMO) frequency hopping (FH) radar sub-pulses in
fast-time. The communications is considered as the secondary function of the proposed dual-function radar
communication (DFRC) systems. We use differential phase shift keying (DPSK) and continuous phase modu-
lation (CPM). These modulations preserve the continuous phase between the FH sub-pulses, unlike phase shift
keying (PSK) modulated symbols. The performance of FH/DPSK and FH/CPM systems is compared with that
of the FH/PSK system in terms of range sidelobe levels (RSL) and power spectral density (PSD). It is shown
that the proposed DFRC systems exhibit better spectral containment and lower spectral sidelobe levels. The
communication data rates for the proposed system are derived, and to assume relatively high values.
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1. INTRODUCTION

Radar and Communications co-existence has been proposed as a solution for spectral congestion caused by
increased demands of wireless industry.1–4 As a solution to this problem, dual-function radar-communication
(DFRC) systems were proposed in.5,6 The communications is treated as secondary to the primary radar function.
The DFRC systems make full use of the radar resources such as high quality hardware and high transmit power.
For the DFRC system, information embedding into the emission of single-input multiple-output (SIMO) radar
can be achieved using waveform diversity, sidelobe control, or time modulated array. Information embedding
into the emission of multiple-input multiple-output (MIMO) radar was considered in.7,8 Alternative names used
in the literature for the DFRC system are RF convergence, Intentional Modulation on a Pulse and Co-Radar.9,10

Frequency hopping (FH) waveforms are attractive for radar and communications since they have constant mod-
ulus and are easy to generate.11 In the DFRC system considered, the phase modulated communication symbols
are embedded in each hop of the FH waveforms. Modulation of FH sub-pulses with phase shift keying (PSK)
symbols was proposed and analyzed in.6,12 The phase rotation resulting from the PSK symbol embedding
disrupts the continuous phase between the FH sub-pulses. This causes an adverse effect of increased spectral
side lobes and spectral leakage into adjacent frequency bands.13 To overcome this shortcoming, we propose the
modulation of FH radar sub-pulses with differential phase shift keying (DPSK) and continuous phase modulation
(CPM) signals.
DPSK and CPM modulations are generally the preferred methods to contain spectral leakage as both maintain
constant modulus. Although the DPSK modulation preserves the continuous phase between the FH sub-pulses,
the first derivative of the phase is not continuous and hence the spectral spreading still exists. The first deriva-
tive of the phase of CPM signals is continuous allowing the CPM signals to offer better spectral containment
compared to PSK and DPSK modulations. Therefore, we consider herein the CPM information embedding for
FH radar waveforms.
In this paper, we present three types of phase modulated FH DFRC systems, namely, FH/PSK, FH/DPSK,
FH/CPM. We compare the performance of these systems by examining the range sidelobe levels (RSL) and
power spectral density (PSD) pre- and post- symbol embedding. The proposed DFRC systems offer reduction in
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the RSL, an improvement in the spectral sidelobe levels. This, in turn, permits higher FH coefficient recurrence,
thereby increasing the achievable communication data rate.
The paper is organized as follows. The details of the DFRC system design, the FH waveforms, PSK, DPSK and
CPM symbol embedding are presented in Section 2. Bandwidth requirements and MIMO radar receive signal
model is presented in Section 3, analysis of the DFRC waveforms is presented in Section 4. Simulations are
provided in Section 5, and the conclusions are drawn in Section 6.

2. MIMO DFRC SYSTEM DESIGN

We consider a system equipped with a common dual-function transmit platform. The common transmit array
comprises MT omni-directional transmit antennas. The MIMO radar co-located receive array has N antennas
arranged in a linear shape. For a MIMO system, the radar transmit waveforms βm(t), m = 1 . . .MT , should
satisfy the orthogonality condition, i.e.,∫

Tp

βm(t)β∗m′(t+ τ)ej2πνtdt =

{
δ(τ)δ(ν), m = m′,
0, otherwise

(1)

where, t is the fast-time index, Tp is the pulse duration, (·)∗ denotes the conjugate of a complex number, τ
and ν denote time delay and Doppler shift, respectively and δ(·) is the Kronecker delta function. It is difficult
to synthesize waveforms which satisfy the ideal orthogonality condition (1). Practical waveforms, which can be
efficiently synthesized, are discussed in,7 and references therein.

2.1 Frequency-Hopping Waveforms

FH waveforms meet the MIMO radar requirements, like high transmit power efficiency, high range and Doppler
resolution properties.11,14 The FH waveform transmitted from mth antenna can be expressed as,

βm(t) =

Q∑
q=1

ej2πcm,q∆f tu(t− q∆t), (2)

where cm,q, m = 1, . . . ,MT , q = 1, . . . , Q denote the FH coefficients, Q is the number of sub-pulses derived from
K available frequencies (K ≥ Q), ∆f and ∆t are the frequency step and the sub-pulse duration, respectively,
and

u(t) ,

{
1, 0 < t < ∆t,
0, otherwise.

(3)

is a rectangular pulse of duration ∆t. Equation (2) states that each FH waveform contains Q sub-pulses, i.e.,
the radar pulse duration Tp = Q∆t. It is also assumed that ∆t∆f is an integer. In this paper, we choose
∆t∆f = 1.11 For symbol detection, it is important for the communication function that we choose

cm,q 6= cm′,q, ∀q,m 6=,m′. (4)

2.2 PSK Symbol Embedding

Let {Ω(m,q) ∈ DPSK}, m = 1, . . . ,MT , q = 1, . . . , Q be a set of PSK symbols that need to be embedded into the

MIMO radar pulse, where the PSK dictionary of size J is defined as DPSK =
{

0, 2π
J , . . . ,

(J−1)2π
J

}
. Each PSK

symbol represents Nbit = log2 J bits. The PSK-modulated FH radar waveforms can be expressed as6

ψPSKm (t) =

Q∑
q=1

ejΩ(m,q)hm,q(t)u(t− q∆t), (5)

where hm,q(t) , ej2πcm,q∆f t is the FH signal associated with the mth antenna.



2.3 DPSK Symbol Embedding

We discuss embedding in FH sub-pulses with DPSK phase modulated waveforms. We implement the DPSK
waveform structure presented in.15 For high power applications, radar codes must be constant modulus so as to
maximize the energy on target. Therefore, mostly all codes are designed with the implicit assumption that each
code value is modulated onto a square-shaped chip. There are Q sub-pulses available in the FH radar pulse, each
sub-pulse is embedded with an information symbol. The information symbol is represented by a phase, Ω(m,q).
The phase sequence can be expressed using a sequence of rectangular chips as,

sm(t) =

Q∑
q=1

ejΩ(m,q)u(t− q∆t), (6)

where, Ω(m,q) is the phase value of the qth sub-pulse from mth antenna. The DPSK modulation of the code

sequence in (6) for mth transmit antenna is given by,

ζm(t) = sm (t−∆t/2)

∣∣∣∣cos

(
πt

∆t

)∣∣∣∣− jsm(t)

∣∣∣∣sin( πt∆t

)∣∣∣∣ . (7)

The above equation infers that the phase of ζm(t) is continuous across the sub-pulse boundaries q∆t. For the
sake of simplicity, and for all practical purposes, we assume J = 2, i.e., Ω(m,q) ∈ (0, π). The DPSK modulated

FH MIMO radar waveform from mth antenna can be represented as,

ψDPSKm (t) = βm(t).ζm(t). (8)

2.4 CPM Symbol Embedding

The continuous phase modulation signals preserves the phase continuity between the successive symbols. The
constant envelope feature translates to robustness against the distortion introduced by non-linear components
in the transmitter while the continuous phase feature of CPM signals leads to high spectral efficiency.16

The complex baseband CPM signal for mth transmit antenna can be expressed as

sm,φ(t;α) = ejφ(t;α). (9)

The phase can be defined as a pulse train16 of the form,

φ(t;α) = 2π
∑
i

hiαib(t− i∆t), (10)

where αi is an M -ary symbol which can be selected from the alphabet sequence {±1,±3, . . . ,±(M − 1)}, hi is
the sequence of modulation indices used during the ith symbol interval which are selected in a cyclic manner and
hi is a rational number. b(t) is the phase pulse which is the time-integral of a frequency pulse g(t), i.e.,

b(t) =

∫ t

0

g(p)dp. (11)

If g(t) = 0 for t > ∆t, the signal is called full-response CPM. If g(t) 6= 0 for t > ∆t, then that signal is called
a partial-response CPM. Rectangular and raised cosine frequency pulse shapes have been defined in.17 Partial-
response pulses extend over a duration of L∆t, where, L is a positive integer. When L = 1, the signal is called
a full-response CPM. The rectangular and raised cosine pulses for L = 1 and 3 and their integrals are shown in
Figure. 1. The general expressions for the rectangular and raised cosine frequency pulses, g(t) can be expressed
as,

LREC g(t) =

{
1

2L∆t
, 0 ≤ t ≤ L∆t,

0, otherwise.

LRC g(t) =

{
1

2L∆t

(
1− cos

(
2πt
L∆t

))
, 0 ≤ t ≤ L∆t,

0, otherwise.
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Figure 1: Rectangular and raised cosine frequency pulses and their respective phase pulses for duration L∆t,
L=1 and 3.

Accordingly, the CPM signal can be defined by the parameters M , g(t), L and hi. If the modulation index varies
from symbol to symbol in a cyclic manner, it is referred to as multi-h CPM signal. The general phase expression
of the CPM signal with memory during qth sub-pulse can be expressed as,

φ(t;α) = 2π

q∑
i=q−L+1

hiαib(t− i∆t) + π

q−L∑
i=0

hiαi. (12)

During qth sub-pulse, the symbol α assumes the values, α = {αq−L+1, . . . , αq−1, αq}. The phase values for each
sub-pulse duration are computed using (12). Finally, the CPM modulated FH MIMO radar waveforms from mth

transmit antenna is given as,
ψCPMm (t) = βm(t).sm,φ(t;α). (13)

3. BANDWIDTH REQUIREMENTS AND RECEIVE SIGNAL MODEL

3.1 Bandwidth Requirements

Let B denote the bandwidth assigned to the DFRC system. To insure that the spectral contents of the orthogonal
FH waveforms are confined to the available bandwidth, the FH code, cm,q should be selected from the set of
integers {0, 1, . . . ,K − 1}, where K ≈ B

∆f
,

Beff ≈ (K − 1)∆f +
1

∆t
, (14)

and the condition Beff ≤ B is satisfied. The time-bandwidth product of the DFRC system is given as,

BTp =

(
(K − 1)∆f +

1

∆t

)
Q∆t = KQ. (15)



3.2 MIMO Radar Receive Signal Model

Assume that the signals reflected by L targets impinge on the MIMO radar receiver from directions θ`, ` =
1, . . . , L. The N × 1 complex-valued vector of the received baseband signals can be represented as,

x (t, n) =

L∑
`=1

η` (n)
[
aT (θ`)ψ(t, n)

]
b (θ`) + z (t, n) , (16)

where n denotes the slow-time index, i.e., pulse number, η`(n) is the reflection coefficient associated with the `th

target during the nth pulse, θ` is the spatial angle of the `th target, a(θ`) and b(θ`) are the steering vectors of
the transmit and receive arrays towards the direction θ`, respectively, (·)T stands for the transpose, ψ(t, n) ∈
{ψPSK(t, n),ψDPSK(t, n),ψCPM (t, n)} and ψ(t, n) , [ψ1(t, n), . . . , ψMT

(t, n)]T is the MT × 1 complex vector
of phase modulated waveforms. z (t, n) is an N × 1 vector of zero-mean white Gaussian noise with variance σ2

z .
Matched filtering (16) to the transmitted orthogonal waveforms yields the MTN × 1 data vector,

y(n) = vec

(∫
Tp

x (t, n)ψ(t, n)
H

(t) dt

)

=

L∑
`=1

η`(n) [a (θ`)⊗ b (θ`)] + z̃(n), (17)

where vec (·) denotes the vectorization operator that stacks the columns of a matrix into one long column vector,
⊗ denotes the Kronecker product, (·)H stands for the Hermitian transpose, z̃(n) is MTN × 1 vector of additive
noise at the output of the matched-filters with zero-mean and co-variance σ2

zIMTN , and IMT
is the identity

matrix of size MT ×MT .

Consider a single-antenna communication receiver located at in the spatial direction θc with respect to the
MIMO radar. The signal at the output of the communication receiver is,

r(t, n) = αcha
T (θc)ψ(t, n) + w(t, n), (18)

where αch is the channel coefficient which summarizes the propagation environment between the transmit array
and the communication receiver and w(t, n) represents the additive white Gaussian noise with zero mean and
variance σ2

w.

Assume that time and phase synchronizations between the MIMO radar and the communication receiver
are achieved and the transmitted FH sequence is known at the receiver. Matched filtering r(t, n) to the FH
sub-pulses yields the communication signal,

ym,q(n) =

∫
∆t

r(t, n)h∗m,q(t)u(t− q∆t − nT0)dt, (19)

where, hm,q(t) , ej2πcm,q∆f t is the FH signal associated with the mth antenna during the qth sub-pulse. Then,
the communication symbols can be demodulated using the demodulators for the type of phase modulation used.

4. ANALYSIS OF THE PROPOSED DFRC WAVEFORMS

In this section, we analyze the range sidelobes performance, power spectral density and the communication data
rate that can be achieved by the proposed phase modulated FH MIMO radar waveforms.

4.1 Range sidelobe performance

4.1.1 Without Symbol Embedding

Without loss of generality, we consider the case of a DFRC system with uniform linear arrays. The inter-element
spacings associated with the transmit and receive arrays are denoted as dT and dR, respectively. The spatial



frequency of a target located in direction θ is defined as f = 2πdRsin(θ), where dR is measured in wavelength.
Adopting the AF definition from,14 the AF expression for the MIMO radar can be written as,

|χ(τ, ν, f, f ′)| ,

∣∣∣∣∣
MT∑
m=1

MT∑
m′=1

χm,m′(τ, ν)ej2π(fm−f ′m′)γ

∣∣∣∣∣ , (20)

where, τ, ν, f, f ′ denote time delay, Doppler shift, spatial frequency, and spatial frequency shift, respectively, and
γ , dT /dR. For zero Doppler shift (ν = 0) and f = f ′, (20) can be re-written as,

|χ(τ, 0)| ,

∣∣∣∣∣
MT∑
m=1

MT∑
m′=1

χm,m′(τ, 0)

∣∣∣∣∣ . (21)

We can compute the range sidelobe response from14 for the FH MIMO radar waveforms as,

Γrad(τ) = χm,m′(τ, 0) ,
∫ Tp

0

βm(t)β∗m′(t+ τ), (22)

where, Γrad(τ) is the correlation function between the FH waveforms from antennas m and m′. At delays
τ = c∆t, c = 0, 1, . . . , Q− 1, due to the re-use of frequencies in the FH sub-pulses, the FH MIMO radar system
exhibits high range sidelobes.18

4.1.2 With Symbol Embedding

The range sidelobe levels for the DFRC system with symbol embedding can be computed as,

ΓDF(τ) = χm,m′(τ, 0) ,
∫ Tp

0

ψm(t)ψ∗m′(t+ τ). (23)

At τ = c∆t, due to the randomness of the phase values, the terms inside the summations of (20) cancel each
other, resulting in significant reduction of the range sidelobe levels. As a result, a large number of DFRC wave-
forms can be synthesized with frequency re-use across the sub-pulses.

A. PSK and DPSK
The phase values for PSK and DPSK symbols are selected from Ω(m,q) ∈ D =

{
0, 2π

J , . . . ,
(J−1)2π

J

}
. Therefore,

when there is re-use of frequencies at τ = c∆t, the FH/PSK and FH/DPSK systems result in lower values of
RSL. When the values of Ω(m,q) = 0, both the DFRC systems revert back to the FH MIMO radar system without
embedding.

B. CPM
When τ = c∆t, the RSL of the FH/CPM system depends on the modulation index and the M -ary alphabet
size. When hi = 0 or hi ≈ 0, the FH/CPM waveforms are close to the FH MIMO radar waveforms without
embedding. As the alphabet size, hi increases, using multi-h CPM, the degree of randomness in the phase values
increases and hence the reduction in RSL.

4.2 Power Spectral Density (PSD)

The effect of symbol embedding on the PSD of the FH MIMO radar system is presented in this section.

4.2.1 DPSK

Unlike PSK symbol embedding, the DPSK modulation presented in this paper results in smooth transitions
between the FH MIMO sub-pulses. Therefore, the DPSK symbol embedding leads to lower spectral sidelobes
compared to that of PSK embedding. Since the first derivative of the phase for the DPSK modulation is not
continuous, this can still cause spectral broadening.19 This adverse effect can be avoided by setting few of the
phase values used to define the symbols at the high and low frequencies of the spectrum, Ωm,q = 0◦.



4.2.2 CPM

CPM has better spectral efficiency compared to DPSK and PSK modulations. The spectral characteristics of
the CPM signal depend on the design parameters hi, shape of the frequency pulse, g(t) and L. Small values of
hi result in CPM signals with relatively small bandwidth occupancy, while large values of hi result in signals
with large bandwidth occupancy.17 Use of smooth pulses such as raised cosine pulses also result in smooth
transition between the symbols. When L > 1, each pulse extends over multiple symbols duration. As a result,
the pulse b(t) becomes more smoother and hence the better spectral efficiency.20,21 Accordingly, the use of multi-
h, partial-response CPM with smooth pulse shapes is preferred to have good spectral characteristics. But, the
demodulator complexity at the communication receiver increases when partial-response CPM is used. We present
CPM modulations with different design parameters in Sec. 5, to demonstrate the effect of symbol embedding on
PSD of the FH MIMO radar.

4.3 Data Rate

The achievable communication data rate (DR) for the DFRC system can be readily shown6 to be proportional
to the pulse repetition frequency, the number of transmit elements, the length of the FH code, and the size of the
symbol constellation. Here, the antennas, MT can take a maximum of K frequency values. Thus, the data rate
becomes, DR = PRF.K.Q.log2(M) for FH/CPM, and DR = PRF.K.Q.log2(J) for FH/PSK and FH/DPSK
systems. By implementing the condition,

cm,q 6= cm′,q′ , m 6= m′ & q 6= q′ (24)

there will be minimum correlation between the FH sub-pulses and hence the communication symbol embedding
does not show pronounced effect on RSL. But, using (24), reduces the number of hops and antennas that can be
implemented to MTQ = K. The maximum data rate in this case becomes DR = PRF.K.log2(M) for FH/CPM
and DR = PRF.K.log2(J) for FH/PSK and FH/DPSK systems. This is less than the data rate that can be
achieved with re-use of coefficients in the FH code matrix. Therefore, with minimal effort in designing the code
matrix, we can utilize information symbol embedding to improve the data rate of the system.

5. SIMULATIONS

We consider a MIMO radar system operating at X-band with carrier frequency fc = 8.2 GHz and bandwidth
105 MHz. The sampling frequency is taken as the Nyquist rate, i.e., fs = 2 × 1.5 × 108 sample/sec. The pulse
repetition interval (PRI) is T0 = 10 µs, i.e., the pulse repetition frequency (PRF) is 100 KHz. The transmit array
is considered to be a ULA comprising MT = 16 omni-directional transmit antennas spaced half a wavelength
apart. We generate a set of 16 FH waveforms. The parameter K = 16 is chosen such that the FH step is
∆f = 6.4 MHz. The FH code length Q = 16 is assumed and the FH interval duration ∆t = 0.156 µs is used.
The 16 × 16 FH code is generated randomly from the set {1, 2, . . . ,K}, where K = 16. The values of J = 2,
M = 4 and L = 1, 3, and the same values of FH code are used for all the DFRC systems presented in this paper.

Example 1: RSL
The RSL response for FH/PSK and FH/DPSK systems is shown in Figure. 2. It can be noticed that, at τ = c∆t,
the randomness of the PSK and DPSK symbols helps in RSL reductions. It can also be observed that the max-
imum value of RSL of the FH/PSK and FH/DPSK systems does not exceed the upper bound of RSL of the
FH system without embedding. With CPM symbol embedding, the phase is continuous between the sub-pulses,
and the phase trees for different frequency pulse shapes are shown in Figure. 3 for M = 4 and hi = 4/16. The
phase tree for a rectangular pulse shape shown in Figure. 3 (a) exhibits sharp phase transitions maintaining the
continuous phase between symbols. Phase trees for raised cosine pulses with L = 1, 3 respectively, are shown in
Figure. 3 (b), (c). It is shown that use of raised cosine pulse results in smoother phase transitions between the
symbol intervals and this becomes even smoother when 3RC CPM is used.
The RSL of the FH/CPM system for the parameters 3RC, 1RC and 1REC are presented in Figure. 4 and
are compared with FH MIMO radar system without symbol embedding. It is shown in Figure. 4 (a) (b), for
hi = 1/32, 1/16 that, when hi ≈ 0, the RSL of the FH/CPM system are similar to the FH MIMO radar system
without embedding. It is shown in Figure. 4 (c) and (d), for hi = 1/4, 1/2 that the RSL decreases with increased
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Figure 2: RSL of FH/PSK, FH/DPSK and FH MIMO radar system without embedding.

value of hi. It can also be observed from Figure. 4 (e) and (f) that use of multi-h CPM shows improvement in
the RSL compared to single-h CPM in FH/CPM MIMO DFRC systems.
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Example 2: PSD
The PSD of the FH/CPM DFRC system for the parameters presented in Figure. 4 is shown in Figure. 5. It can
be observed from Figure. 5 (a), (b) that when hi ≈ 0, the PSD of the FH/CPM DFRC system is similar to the
FH radar system without embedding. But, as hi increases, in Figure. 5 (c)-(f), there is spectral broadening and
the spectral sidelobes roll-off. The spectral broadening is more pronounced with the use of 1RC and 1REC CPM
compared to 3RC CPM. Figure. 5 (f) shows the PSD of 4- ary, 3RC CPM with h1 = 4/16, h2 = 5/16, a configu-
ration which is extensively used in Aeronautical Telemetry. This configuration has lower spectral sidelobes and
also shows no spectral broadening.

Example 3: Comparison between FH MIMO radar systems with and without symbol embedding
Figure. 6 shows the RSL response and PSD of FH/PSK, FH/DPSK, FH/CPM MIMO DFRC systems and FH
MIMO system without embedding. It is shown in Figure. 6 (a) that all the FH MIMO DFRC systems presented
in this paper exhibit better RSL response compared to FH MIMO radar system without embedding. For the
same FH code, FH/CPM system has better RSL response compared to FH/PSK and FH/DPSK DFRC systems.
From Figure. 6 (b), it is evident that the FH/DPSK system exhibits low spectral sidelobes, but there is spectral
broadening and the FH/PSK system shows high spectral sidelobe levels. The FH/CPM system shows better
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Figure 4: RSL for 4-ary CPM with different pulse shapes and modulation indices
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Figure 5: PSD for 4-ary CPM with different pulse shapes and modulation indices



spectral containment compared to the other two DFRC systems considered in this paper.
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Figure 6: RSL and PSD for different modulations.

6. CONCLUSION

Modulation of FH MIMO radar pulses in fast-time with DPSK and CPM modulated information symbols was
presented in this paper. The RSL response and PSD of the FH/CPM and FH/DPSK DFRC systems were
examined and compared with FH/PSK and FH MIMO radar system without symbol embedding. Our results
showed that, the FH/CPM MIMO DFRC system has better RSL response and spectral containment compared
to other FH modulated systems presented in this paper.
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