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Abstract—In considering man-machine interface for smart
home technology, we introduce a simple but effective technique
in automatic arm motion recognition using radar. The proposed
technique classifies arm motions based on the envelopes of
their micro-Doppler (MD) signatures. These envelopes capture
the distinctions among different arm movements and their
corresponding positive and negative Doppler frequencies that
are generated during each arm motion. We detect the positive
and negative frequency envelopes of MD separately, and form
a feature vector of their augmentation. We use the k-nearest
neighbor (kNN) classifier and Manhattan distance (L1) measure,
in lieu of Euclidean distance (L2), so as not to diminish small but
critical envelope values. It is shown that this method can achieve
higher than 99% classification rates when choosing specific arm
motion articulations from a sitting down position.

Keywords—arm motion recognition; smart homes; time-
frequency representations; micro-Doppler.

I. INTRODUCTION

Recently, radar has become of increased interest for indoor
sensing applications. In particular, human activity monitoring
radar systems are rapidly evolving with applications that
include gait recognition, fall motion detection for elderly care
and aging-in-place technologies [1, 2].

Over the past decade, much work has been done in human
motion classifications that include daily activities of walking,
kneeling, sitting, standing, bending, falling, etc. [3–15]. There
are two main approaches of human motion classifications,
namely those relying on handcrafted features that relate to hu-
man motion kinematics [3–7], and others which are data driven
and include low-dimension representations [8, 9], frequency-
warped cepstral analysis [10], and neural networks [11–15].

In addition to classifying human motions, radars can be used
for hand gesture and arm motion recognition which represent
an important problem in a variety of applications that involve
smart homes and human-machine interface for intelligent
devices [16–24]. The latter is considered vital in aiding the
physically impaired who might be wheelchair confined or bed-
ridden patients. The goal is to enable these individuals to
be self-supported and independently functioning. In essence,
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automatic hand and arm motion recognition is poised to make
our homes more user friendly and most efficient through
the use of contactless radio frequency (RF) sensors that can
identify different hand and arm motions for instrument and
household appliance control. The most recent project on hand
gesture recognition, Soli, by Google for touchless interactions
is a testament of this emerging technology [24].

While automatic hand gesture recognition is important in
touchless close-range interactive hand-held or arm-worn de-
vices, such as cell phones and watches, automatic arm gesture
recognition is most suitable for touchless man-appliance in-
teraction with longer range separation. The larger radar cross-
section of the arms, vis-a-vis hands, permits more remote
positions setting of the radar indoor. The same approaches
employed for classifying human daily activities can be applied
for recognition of arm motions using the electromagnetic (EM)
sensing modality. However, there is an apparent difference
between MD signatures of arm motions and those associated
with motion activities that involve human body. Depending
on the experiment setup and radar data collection specs, MD
representations of arm motions can be simple, limited to short
time duration and small frequency bandwidth, and are mainly
characterized by their confined power concentrations in the
time-frequency domain. On the other hand, the MD signatures
of body motions are intricate, of multi-component signals,
span relatively longer time periods and assume higher Doppler
frequencies. The same differences exist between body and
hand motions.

In this paper, we present a method to discriminate five
classes of dynamic arm motions using radar MD sensor. Two
MD features are extracted from the data spectrograms. They
correspond to the positive and negative frequency envelopes of
the arm motion MD signatures. Only two envelopes implicitly
capture, for each motion, the intrinsic and salient features of
positive-negative frequency differences, the time alignments
and misalignments of the peak extent and occupancy over
the joint time and frequency variables. The same technique
has been recently and successfully applied for automatic hand
gesture recognition [25].

The remainder of this paper is organized as follows. In
Section II, we present the extraction method of MD signature
envelopes and discusses the employed classifier. Section III



describes the radar data collection and pre-processing of arm
motions. Section IV gives the experimental results based on
the real data measurements. Section V is the conclusion of the
paper.

II. ARM MOTION RECOGNITION ALGORITHM

A. Time-frequency Representations

Arm motions generate non-stationary radar back-scattering
signals. Time-frequency representations (TFRs) are typically
employed to analyze these signals in the joint-variable do-
mains, revealing what is referred to as MD signatures. A
typical technique of TFRs is the spectrogram. For a discrete-
time signal s(n) of length N , the spectrogram can be obtained
by taking the short-time Fourier transform (STFT)

S (n, k) =
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where n = 0, · · · , N − 1 is the time index, k = 0, · · · K − 1
is the discrete frequency index, and L is the length of the
window function h(·). The zero-frequency component is then
shifted to the center of the spectrogram. It is noted that if the
MD signal can be modeled as a sum of frequency modulated
signals, then the signal parameters can be estimated using
maximum likelihood techniques [26]. However, the MD signal
of the arm motion does not conform to this model and, as
such, spectrograms will be used for feature extractions. It is
also noted that the signal s(n) in equation (1) is considered
as a non-stationary deterministic signal rather than a random
process [27].

B. Extraction of the MD Signature Envelopes

We select features specific to the nominal arm motion
local frequency behavior and power concentrations. These
features are the positive and negative frequency envelopes in
the spectrograms. The envelopes attempt to capture, among
other things, the maximum positive frequency and negative
frequencies, length of the event and its bandwidth, the relative
emphases of the motion towards and away from the radar,
i.e., positive and negative Doppler frequencies. In essence,
the envelopes of the signal power concentration in the time-
frequency domain may uniquely characterize the different arm
motions. The envelopes of the MD signature can be deter-
mined by an energy-based thresholding algorithm [28]. First,
the effective bandwidth of each motion frequency spectrum
is computed. This defines the maximum positive and nega-
tive Doppler frequencies. Second, the spectrogram S(n, k) is
divided into two parts, the positive frequency part and the
negative frequency part. The corresponding energies of the two
parts, EU (n) and EL(n), at slow-time are computed separately
as,

EU (n) =
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These energies are then scaled to define the respective thresh-
olds, TU and TL,

TU (n) = EU (n) · σU , TL(n) = EL(n) · σL (3)

where σU and σL represent the scale factors, both are less than
1. These scalars can be chosen empirically, but an effective
way for their selections is to maintain the ratio of the energy
to the threshold values constant over all time samples. For
the positive frequency envelope, this ratio can be computed
by finding both values at the maximum positive Doppler
frequency. Once the threshold is computed per equation (3),
the positive frequency envelope is then found by locating
the Doppler frequency for which the spectrogram assumes
equal or higher value. Similar procedure can be followed
for the negative frequency envelope. The positive frequency
envelope eU (n) and negative frequency envelope eL(n), are
concatenated to form a long feature vector e = [eU , eL].

C. Classifier

We apply proper classifiers based on the envelope features
extracted from the spectrograms. The kNN is among the
most commonly used classifiers in pattern recognition which
are used in this paper. In particular, the kNN is a simple
machine learning classification algorithm, where for each
test sample, the algorithm calculates the distance to all the
training samples, and selects the k closest training samples.
Classification is performed by assigning the label that is most
frequent among these samples [29]. Clearly, the best choice
of k would depend on the data. In this work, k is set to 1.
Four different distance metrics are considered, namely, the
Euclidean distance, the Manhattan distance [30], the Earth
Mover’s distance (EMD) [31] and the modified Hausdorff
distance (MHD) [32].

III. ARM MOTION EXPERIMENTS

The data analyzed in this paper was collected in the Radar
Imaging Lab at the Center for Advanced Communications,
Villanova University. The radar system used in the experiment
generates continuous wave, with carrier frequency and sam-
pling rate equal to 25 GHz and 12.8 kHz, respectively. The
radar was placed at the edge of a table. The arm motions were
performed by two arms approximately 2.5 meters away from
radar at zero angle at a sitting position of the individual.

As depicted in Fig.1. The following 5 arm motions were
conducted: (a) Pushing arms, (b) Pushing arms and pulling
back, (c) Crossing arms and opening, (d) Crossing arms, (e)
Rolling arms. In “pushing” arms, we move them towards the
radar, whereas as in “pulling” we move them away from
the radar. Both motions are relatively quick. The “pulling”
immediately follows the “pushing.” The motion of “crossing
arms” describes crossing from a wide stretch. Only one person
participated in the experiment. Each arm motion was recorded
over 50 seconds to generate one data segment. The recording
was repeated for 5 times. Each data segment contained 14 or
15 individual arm motions, and a 3 second time window is
applied to capture the individual motions. As such, repetitive



motions and associated duty cycles were not considered in
classifications. In total, 355 segments of data for 5 arm motions
were generated.

(a)

(b)

(c)

(d)

(e)

Fig. 1. Illustrations of 5 different arm motions.

Fig. 2 shows examples of spectrograms and the correspond-
ing envelopes for different arm motions. The employed sliding
window h(·) is rectangular with length L =2048 (0.16 s), and
K is set to 4096. It is clear that the envelopes can well capture
the salient features of the respective spectrograms. It is also
evident that the MD characteristics of the spectrograms are in
agreement and consistent with each arm motion kinematics.
For the arm motion “Pushing arms,” the arms push forward
directly which only has the positive frequency. The MD
corresponding to the motion “Pushing arms and pulling back”
has extra negative frequency which is caused by the “pulling”
step. The arm motion, “Crossing arms and opening,” can be
decomposed into two steps, in the “crossing” step, the arms
move closer to the radar at the beginning which causes the
positive frequency, then moves away from the radar which
induces the negative frequency, and the “open” step is the
opposite motion of “crossing” step, which produces the neg-
ative frequency first and then negative frequency. The motion
“Crossing arms” only contains the first step of the motion
“Crossing arms and opening,” and has the same respective MD
signature. The two arms of motion “Rolling arms” perform
exactly the opposite movements, as one arm moves forward
along circular trajectory, the other moves backward. So, the
MD has the positive frequency and negative frequency at the
same time. In one motion cycle, the right arm experience three
steps, moving forward, moving backward and moving forward
again.

(a) (b) (c)

(d) (e)

Fig. 2. Spectrograms and corresponding envelopes of 5 different arm motions.

IV. EXPERIMENTAL RESULTS

In this section, all 355 data segments are used to validate the
proposed method where 70% of the data are used for training
and 30% for testing. The classification results are obtained by
1000 Monte Carlo trials.

As discussed in Section II, the extracted envelopes are fed
into the kNN classifier, with different distance measures. The
recognition accuracy is presented in Table I. It is clear that
the kNN classifier based on L1 distance achieves the highest
accuracy, over 99%, followed by other distance metrics. Differ-
ent from other distances, the L1 distance attempts to properly
account for small envelope values. The confusion matrix of
the kNN classifier based on the L1 distance is shown in Table
II, from which we can observe that Class I and Class III are
most distinguishable, with an accuracy 100%.

The full paper includes comparison of the proposed tech-
nique with existing techniques, such those based on PCA and
sparse reconstruction methods [6, 16]. Large data volumes
with many participants will be used for assessments and
comparisons.

TABLE I. RECOGNITION ACCURACY WITH DIFFERENT TYPES OF CLAS-
SIFIER

Accuracy
kNN-L1 99.02%
kNN-L2 98.70%

kNN-EMD 98.77%
kNN-MHD 98.65%

TABLE II. CONFUSION MATRIX YIELDED BY ENVELOPE METHOD BASED
ON kNN-L1 CLASSIFIER

I II III IV V
I 100% 0 0 0 0
II 1.43% 98.57% 0 0 0

III 0 0 100% 0 0
IV 1.50% 0.17% 0 97.88% 0.45%
V 1.00 % 0.33% 0 0 98.67%

V. CONCLUSION

We introduced a simple and effective technique for auto-
matic arm motion recognition for smart home applications
based on radar returns MD signature envelopes. No range
information was incorporated. An energy-based thresholding



algorithm was applied to separately extract the positive and
negative frequency envelopes of the signal spectrogram. The
extracted envelopes were concatenated and inputted to kNN
classifier. It was shown that the kNN classifier based on L1
distance achieves the highest accuracy and provided over 99
percent classification rate.
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