I. Where did Vertebrates Come From?
 • Phylum Chordata

 • Common Anatomical Structures (present in at least one stage in development):

II. Major Innovations in Animal Evolution
 • Symmetry (radial, bilateral, five-part)
 • Presence and form of body cavity (acoelomate, pseudocoelomate, eucoelomate)
 • Fate of blastopore (becomes mouth or anus)
 • Pattern of cleavage (radial, spiral)

III. Vertebrate Phylogenetics

IV. Characteristics of Chordates
 • Dorsal hollow nerve tube
 • Notochord
 • Pharyngeal gill slits and gill arches
 • Ventral heart
 • Post anal tail

V. Living Vertebrate Taxa
 • Pisces - “Fishes”
 • Amphibia - Amphibians
 • Reptilia - Reptiles
 • Aves - Birds
 • Mammalia - Mammals

VI. Trends in the Evolution of Vertebrates
 • Shift from dominance of solid, cartilaginous notochord to bony, segmented vertebral

 • Anterior dorsal hollow nerve cord expanded into brain (Craniata ? Vertebrata)
 • Evolution of jaws from anterior gill arches (“Agnatha” ? Gnathostomes)

 • Paired fins gave rise to limbs with digits
 • Respiratory gills used in aquatic forms
 • Swim bladder used as lungs
VII. Evolution of Jaws
• First fishes lacked jaws
• Jaws are modifications of the anterior gill supports

VIII. Living “Fishes”
• Gills
 • Jaws and feeding mechanism
 • Cartilaginous or bony skeleton
 • Median (dorsal and ventral) and paired fins (pectoral, pelvic)
• Swim bladder (only bony fishes)
• Dermal scales

IX. Modern Amphibians
• All require water at some stage in the life cycle; most live and
• Skin, which is highly permeable, serves as auxiliary respiratory organ
• Lungs are present - derived from swim bladder; enables aerial respiration
• Living Amphibian Groups:

X. Modern Reptiles
• Adaptations to life on land
 – Tough, scaly skin - epidermal scales; water impermeable;
 – Amniotic eggs - extraembryonic membranes for gas exchange and waste storage
 – Internal fertilization
 – Water-conserving kidneys
Living Reptiles:

XI. Turtles and Tortoises
• Armor-like shell; dorsally fused to vertebral column
• Horny plates instead of teeth

XII. Tuataras
• Only two living species
• Live on islands off the coast of New Zealand
• Look like lizards

XIII. Lizards and Snakes
• Largest group of reptiles (95 % of living reptiles)
• Limb loss in snakes
• Most lizards are insectivores with small peg-like teeth; in snakes
• All snakes are carnivores with highly movable jaws
• Highly developed sensory organs in snakes

XIV. Living Birds
• Skeleton and muscles modified for flying
• Four-chambered heart - more capacity to pump blood for oxygen transport
• Air sacs (modified lungs, in hollow bones)
XV. Feathers
 – Composed of keratin; subdivided into fibrils
 – Derived from reptilian scales
 – Feather structure is an adaptation to increase surface area to provide lift for flight
 – Feather color is used for communication between mates

XVI. Skeletal Adaptations of Birds

XVII. Mammals: Phylum Mammalia

XVIII. Mammalian Origins
 • 200 million years ago, during the Triassic
 • The first mammals had evolved by the Jurassic; they were small, nocturnal and “rodent-like”
 • Three Mammalian Lineages:

XIX. Living Monotremes
 • Duck-billed platypus
 • Two kinds of spiny anteater
 • Echidna

XX. Living Marsupials
 • Young are born in an undeveloped state
 • Most of the 260 species are native to Australia and nearby islands
 • Only the opossums are found in North America

XXI. Living Placental Mammals
 • Most diverse mammalian group
 • Young develop internally in mother’s uterus
 • Placenta composed of maternal and fetal tissues; nourishes fetus, delivers oxygen, and removes wastes
 • Placental mammals develop more quickly than marsupials

XXII. Earliest Primates
 • Primates evolved more than 60 million years ago during the Paleocene
 • First primates resemble tree shrews:

XXIII. Hominoids??