I. Characteristics of Animals
 • Multicelled heterotrophic eukaryotes
 • Require oxygen for
 • Reproduce sexually, and perhaps
 • Motile at some stage
 • Develop from embryos
 • Originated during the Precambrian

II. Symmetry

III. The Gut
 • Region where food is digested and then absorbed
 • Saclike gut:
 • Complete digestive system:

IV. Body Cavities
 - Acoelomate
 - Pseudocoel
 - Coelom

V. Segmentation
 • Repeating series of body units
 • Units may or may not be similar to one another
 • Earthworms
 • Insects

VI. Animal Origins
 • Originated during the Precambrian (1.2 billion - 670 million years ago)
 • From what? Two hypotheses:

VII. Phylum Placozoa
 • One living species, Tricoplax adherens
 • Simplest known animal
 • Two-layer body, 3 mm across

VIII. Sponges - Phylum Porifera
 • No
 • No
 • No
 • Reproduce
 • Microscopic swimming-larval stage
IX. Phylum Cnidaria
 • Only animals that produce nematocysts
 • Nerve net
 • Hydrostatic skeleton
 • Saclike gut
 • Classes:

X. Two Main Body Plans:

XI. Flatworms: Phylum Platyhelminthes
 • Acoelomate
 • All have simple or complex organ systems
 • Most are
 • Classes
 – Turbellarians (Turbellaria)
 – Flukes (Trematoda)
 – Tapeworms (Cestoda)

XII. Coelomate Lineages

XIII. Cleavage Patterns

XIV. First Opening in Embryo

XV. Phylum Annelida
 • Segmented, coelomate worms
 • Class Polychaeta

 • Class Oligochaeta

 • Class Hirudinea

XVI. Phylum Mollusca
 • Bilateral, soft-bodied coelomate
 • Most have a shell or reduced version of one
 • Mantle drapes over body and secretes shell
 • Most have a fleshy foot
 • Classes
 – Gastropods (snails)
 – Chitons
 – Bivalves (clams)
 – Cephalopods (squid)
XVII. Phylum Echinodermata
• The only
• Almost all are marine
• Body wall has spines or plates of calcium carbonate
• No brain
• Adults are radial with bilateral features
• Classes:

XVIII. Phylum Arthropoda
• The phylum with the greatest number of species
• Four lineages:
 – Trilobites (all extinct)
 – Chelicerates (spiders, mites, scorpions)
 – Crustaceans (crabs, shrimps, barnacles)
 – Uniramians (insects, centipedes, millipedes)

XIX. Chelicerates
• Originated in seas
• A few are still marine:
 • The arachnids are all terrestrial: Spiders, Mites, Scorpions, Chiggers, “Daddy longlegs,” Ticks

XX. Crustaceans
• Most are marine, some freshwater, a few terrestrial
• Head has two pairs of antenna, three pairs of food-handling appendages
• Examples: Copepods, Crayfish, Barnacles, Lobsters, Shrimps, Crabs, Isopods (pillbugs)

XXI. Millipedes and Centipedes
• Segmented bodies with many legs
• Millipedes:
 • Centipedes:

XXII. Arthropods: Adaptations for Success
• Hardened
• Jointed
• Fused
• Respiratory structures
• Specialized

XXIII. Insects
General body plan

Diverse mouthparts

Development
XXIV. Examples
Hemimetabolites
- ODONATA
- ORTHOPTERA
- ISOPTERA
- BLATTERIA
- PHTHIRAPTERA

Holometabolites
- SIPHONAPTERA
- LEPIDOPTERA
- HYMENOPTERA
- DIPTERA
- COLEOPTERA

XXV. Insects: Adaptations for Success
- Holometabolism =
- Flight =
- Exoskeleton =
- Small size =
- Short generation times and high fecundity =
- Co-evolution with angiosperms =

XXVI. Phylogeny Terminology
- Phylogenetics – the study of evolutionary relationships among organisms
- These relationships can be determined by:
 - Other terminology
 - Tips of branches represent species included in analysis
 - Points of division (nodes) represent ancestors
 - Ingroup = the group for which you want to determine relationships
 - Outgroup = ancestral organism of your ingroup
 - Apomorphy = derived character
 - Synapomorphy = shared derived characters

XXVII. Phylogenetic Context: Invertebrates
NEMATODE ORIGINS

ARTHROPODA

XXVIII. VISIT THE ACADEMY: http://www.acnatsci.org/